Übungen zur Analysis I (Lehramt)

Aufgabe 41: Es seien $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine Funktion und $x_0 \in I$. Zeigen Sie: f ist genau dann differenzierbar in x_0 , wenn gilt: Es existieren ein $m \in \mathbb{R}$ sowie eine in x_0 stetige Funktion $r: I \to \mathbb{R}$ mit $r(x_0) = 0$ und $f(x) = f(x_0) + m(x - x_0) + r(x)(x - x_0)$ für $x \in I$. (*Hinweis:* Beide Implikationen getrennt betrachten!)

Aufgabe 42: Differenzieren Sie die folgenden Funktionen:

(a)
$$f(x) = \frac{x+1}{x-2}$$

(b)
$$f(x) = \frac{x^2}{(x+1)^3}$$

(c)
$$f(x) = \sqrt{x^2 + 1} - x^3$$

(d)
$$f(x) = x \cdot \sqrt{x^2 + 1}$$

Aufgabe 43:

(a) Differenzieren Sie die folgende Funktion:

$$f:]0, \infty[\to \mathbb{R}, \quad f(x) = x^x.$$

(b) Gegeben sei die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \left\{ \begin{array}{ll} x^3 & \text{für } x < -1 \\ 3x + 2 & \text{für } -1 \le x < 2 \\ 7 + e^{x-2} & \text{für } x \ge 2 \end{array} \right.$$

- (i) Skizzieren Sie den Graphen von f.
- (ii) Bestimmen Sie alle $x_0 \in \mathbb{R}$, in denen f differenzierbar ist. Berechnen Sie gegebenenfalls $f'(x_0)$.

Aufgabe 44 (*): Gegeben seien die Funktionen

$$f_1(x) = e^{2x+1}$$
 und $f_2(x) = x^3 + 2$.

Berechnen Sie die Ableitungen von $f_1 \circ f_2$ und $f_2 \circ f_1$.