Prof. Dr. W. Kaballo Dr. Birgit Jacob

3. Übungsblatt zur Vorlesung Gewöhnliche Differentialgleichungen SS 2002

Aufgabe 9

- 1. Lösen Sie das folgenden System: $\dot{x} = y\sqrt{x^2 + y^2}, \quad \dot{y} = -x\sqrt{x^2 + y^2},$
- 2. Bestimmen Sie diejenige Lösung der folgenden Differentialgleichung, die durch den Punkt (1,1) geht, in der Form y=f(x):

$$\dot{x} = 2y, \qquad \dot{y} = -y^2 - x - 1.$$

Aufgabe 10

Bestimmen Sie die allgemeine Lösung folgender Differentialgleichungen:

1.
$$\dot{x} = \alpha \frac{x}{t}, \qquad \alpha \in \mathbb{R},$$

$$2. \ \dot{x} = x \sin t + \sin t.$$

Aufgabe 11

Es sei φ die Lösung des Anfangswertproblems

$$m\ddot{x} = -\gamma \frac{mM}{x^2}, \quad x(0) = R, \quad \dot{x}(0) = v_0,$$

wobei $\gamma, m, M, R, v_0 > 0$.

1. Zeigen Sie:

$$\varphi$$
 ist für $t \to \infty$ unbeschränkt $\iff E \ge 0 \iff v_0 \ge v_F := \sqrt{\frac{2\gamma M}{R}}$.

2. Berechnen Sie für den Fall $v_0 = v_F$ die Lösung explizit.

Aufgabe 12

Es seien $I \subset \mathbb{R}$ ein Intervall und $p \in C^1(I, \mathbb{R})$ sowie $q, r \in C(I, \mathbb{R})$. Zeigen Sie, dass die Differentialgleichung

$$\ddot{y} + p(t)\dot{y} + q(t)y = r(t)$$

durch die Transformation $x(t)=y(t)e^{s(t)}$ mit $s(t)=\frac{1}{2}\int p(t)dt$ in die Form

$$\ddot{x} + a(t)x = b(t)$$

gebracht werden kann.

Abgabe Montag, den 06.05.2002, 10.00 Uhr