2. Übungsblatt zu "Analysis I für Lehramt", WS 2002/03

Abgabetermin: Donnerstag, 31.10.02, bis 12.00 Uhr in den Kästen

Aufgabe 6: Für $k \in \mathbb{Z}$ seien Zahlen $a_k \in \mathbb{R}$ gegeben. Machen Sie sich folgende Formeln klar und führen Sie jeweils die Index-Transformationen k = j + 1 bzw. $k = \ell - 1$ durch.

a)
$$\sum_{k=0}^{3} a_{2k-1} = a_{-1} + a_1 + a_3 + a_5$$

b)
$$\sum_{k=3}^{6} a_{2^k} = a_8 + a_{16} + a_{32} + a_{64}$$

Aufgabe 7: Geben Sie einen Induktionsbeweis für die quadratische Summenformel

$$\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1) \quad \text{für } n \in \mathbb{N}$$

an.

Aufgabe 8: Berechnen Sie

a)
$$\sum_{k=1}^{n} (2k-1)$$
 und b) $\sum_{k=1}^{n} (2k-1)^2$

für $n \in \mathbb{N}$.

Aufgabe 9: Für welche $n \in \mathbb{N}$ gelten die folgenden Ungleichungen?

a)
$$2^n > n^2$$
 b) $3^{2^n} < 2^{3^n}$

Beweisen Sie Ihre Behauptung!

Aufgabe 10: Beweisen Sie die Bernoullische Ungleichung

$$(1+y)^n \ge 1 + ny \quad \text{mit } n \in \mathbb{N}$$

für $y \ge -2$. Für welche y gelingt ein Induktionsbeweis?

Hinweis:

Die Übungsblätter sind ab sofort auch im Internet erhältlich und zwar über die folgende Seite der Fachschaft Mathematik:

http://fsmath.mathematik.uni-dortmund.de/aufgabenzettel