5. Übungsblatt zu "Analysis III für Sek II", WS 2002/03

Abgabetermin: Montag, 25.11.02, bis 12.00 Uhr in den Kästen

Aufgabe 21: Es sei $f \in \mathcal{M}(X,\lambda)$ mit $f(x) \neq 0$ λ -f.ü. Zeigen Sie, daß $\frac{1}{f} \in \mathcal{M}(X,\lambda)$ gilt.

Aufgabe 22: Es sei (A_k) eine Folge λ -meßbarer Mengen in X mit $\sum_{k=1}^{\infty} m_{\lambda}(A_k) < \infty$. Zeigen Sie, daß λ -fast alle $x \in X$ in nur endlich vielen A_k liegen.

Aufgabe 23: Zeigen Sie, daß jede kompakte Teilmenge $K\subseteq \mathbb{R}^n$ λ -meßbar ist mit $m_{\lambda}(K)<\infty$.

Hinweis: Betrachten Sie die Abschneidefunktionen $\eta_j := \eta_{K,\frac{1}{j}}$, die allgemein für $\varepsilon > 0$ definiert sind durch:

$$\eta_{K,\varepsilon}: x \mapsto \begin{cases}
1 - \frac{1}{\varepsilon} d_K(x) & \text{falls } d_K(x) \le \varepsilon \\
0 & \text{falls } d_K(x) \ge \varepsilon
\end{cases}$$

Aufgabe 24: Berechnen Sie das folgende Doppelintegral:

$$\int_0^1 \int_x^1 y^2 \sin \frac{2\pi x}{y} \, dy \, dx$$

Aufgabe 25: Berechnen Sie mit Hilfe des Satzes von Fubini das Volumen der Einheitskugel $K := \overline{K}_1(0) \subseteq \mathbb{R}^3$.