Prof. Dr. N. Steinmetz

Analysis I

8. Übungsblatt, WS 2002/03

Abgabe bis Montag, 9. Dezember 2002, 14.00 Uhr, in die Kästen im Foyer.

Aufgabe 1

Untersuchen Sie die folgenden Funktionenreihen auf gleichmäßige Konvergenz in I:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{x^2 + n}$$
, $I = \mathbb{R}$

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{x^2 + n}$$
, $I = \mathbb{R}$ b) $\sum_{n=1}^{\infty} \frac{nx}{1 + n^4 x^2}$, $I = [q, \infty), (q > 0)$

Aufgabe 2

Es seien f_n, f, g in \mathbb{R} definierte Funktionen, und (f_n) konvergiere gleichmäßig gegen f. Zeigen Sie: Ist g beschränkt, so konvergiert $(f_n g)$ gleichmäßig gegen fg. Bleibt die Aussage richtig, wenn man auf die Beschränktheit von g verzichtet?

Aufgabe 3

Berechnen Sie die Konvergenzradien der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} e^{(3+2(-1)^n)^n} x^n$$

$$b) \sum_{n=0}^{\infty} \frac{n!}{n^n} x^{2n}$$

b)
$$\sum_{n=0}^{\infty} \frac{n!}{n^n} x^{2n}$$
 c) $\sum_{n=0}^{\infty} \frac{n^3}{8^n + 5} x^{3n+1}$

Aufgabe 4

Gegeben seien
$$f(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} - \sum_{n=0}^{\infty} (-1)^n x^{2n+1}$$
 und $g(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!}$.

- a) Bestimmen Sie die ersten 4 Koeffizienten der Potenzreihenentwicklung von $\frac{1}{f}.$
- b) Bestimmen Sie die ersten 3 Koeffizienten der Potenzreihenentwicklung von $f \circ g$.

Aufgabe 5

Es seien $a_0 = 1$, $a_1 = 2$, $a_{n+1} = a_n + 4a_{n-1}$ und $f(x) = \sum_{n=0}^{\infty} a_n x^n$ mit Konvergenzradius r.

- a) Zeigen Sie $0 < a_n \le 4^n$ für alle $n \in \mathbb{N}_0$.
- b) Berechnen Sie f explizit im Intervall $\left(-\frac{1}{4}, \frac{1}{4}\right)$.
- c) Finden Sie eine bessere Abschätzung als $r \geq \frac{1}{4}$.

Übungsblätter und Informationen zur Vorlesung und Übung finden Sie unter http://www.mathematik.uni-dortmund.de/lsix/uebungen/ana/ws0203/index.php