Analysis I

14. Übungsblatt, WS 2002/03

Abgabe bis Montag, 3. Februar 2003, 14.00 Uhr, in die Kästen im Foyer.

Aufgabe 1 \star

Bestimmen Sie zu $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^{-x^2}$ explizit eine Folge (Φ_n) von Treppenfunktionen mit $\Phi_n(x) \leq \Phi_{n+1}(x)$ und $\Phi_n(x) \xrightarrow{n \to \infty} f(x)$ für alle $x \in \mathbb{R}$.

Aufgabe 2

Zeigen Sie für $f \in \mathcal{L}$ und reelle Zahlen a < b < c:

$$\int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx + \int_{c}^{a} f(x) \, dx = 0$$

Aufgabe 3

Berechnen Sie folgende Integrale:

a)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1 + \tan^2 x) dx$$
 b) $\int_{0}^{\log 2} \sinh x dx$ c) $\int_{0}^{\infty} \frac{1}{\sqrt{(x+1)^3}} dx$

Aufgabe 4 \star

a) Die Funktion f sei im Intervall I stetig differenzierbar mit $f(x) \neq 0$ für $x \in I$. Bestimmen Sie die Ableitung von $\log |f(x)|$ und damit für $a, b \in I$:

$$\int_{a}^{b} \frac{f'(x)}{f(x)} \, dx$$

b) Bestimmen Sie mit Hilfe der Aussage in a):

(i)
$$\int_{0}^{\frac{\pi}{4}} \tan x \, dx$$
 (ii) $\int_{1}^{2} \frac{2x^2 + x}{4x^3 + 3x^2 + 1} \, dx$ (iii) $\int_{0}^{1} \frac{2x + 1}{x^2 + 1} \, dx$

Übungsblätter und Informationen zur Vorlesung und Übung finden Sie unter http://www.mathematik.uni-dortmund.de/lsix/uebungen/ana/ws0203/index.php