Analysis II

6. Übungsblatt, SS 2003

Abgabe bis Montag, 2. Juni 2003, 14.00 Uhr, in die Kästen im Foyer.

Aufgabe 1

Es sei D ein Gebiet im \mathbb{R}^n und $f,g:D\to\mathbb{R}^m$ seien differenzierbar. Zeigen Sie:

- a) Das Skalarprodukt $f \cdot g : D \to \mathbb{R}$ ist differenzierbar mit $(f \cdot g)' = f^T g' + g^T f'$.
- b) Ist $f(x) \neq 0$ für $x \in D$, so ist die Funktion $\varphi(x) := |f(x)|$ differenzierbar in D. (Bestimmen Sie die Ableitung von φ .)

Aufgabe 2

Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = \frac{x^3}{x^2 + y^2}$ für $(x,y) \neq (0,0)$ und f(0,0) = 0.

- a) Zeigen Sie, dass f in \mathbb{R}^2 stetig und in $\mathbb{R}^2 \setminus \{(0,0)\}$ differenzierbar ist.
- b) Bestimmen Sie für jedes $(x,y) \in \mathbb{R}^2$ alle Richtungsableitungen $\frac{\partial f}{\partial e}(x,y)$.
- c) Ist f differenzierbar in (0,0)? Begründen Sie Ihr Ergebnis!

Aufgabe 3 \star

Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}$ für $(x,y) \neq (0,0), f(0,0) = 0$.

- a) Zeigen Sie, dass f in (0,0) differenzierbar ist.
- b) Zeigen Sie, dass die partiellen Ableitungen in (0,0) unstetig sind.

Aufgabe 4 \star

Prüfen Sie, ob folgende Funktionen $f: \mathbb{R}^3 \to \mathbb{R}^2$ differenzierbar sind, und bestimmen Sie gegebenenfalls die Ableitung:

a)
$$f(x,y,z) = \begin{pmatrix} x^2 e^y + \sin x \\ xy^2 z^3 e^{xy^2 z^3} \end{pmatrix}$$
 b) $f(x,y,z) = \begin{pmatrix} z \log \left(1 + \frac{xz}{1+y^2}\right) \\ (x^2 + y^2 + z^2)^{\frac{7}{4}} \end{pmatrix}$

Übungsblätter und Informationen zur Vorlesung und Übung finden Sie unter http://www.mathematik.uni-dortmund.de/lsix/uebungen/ana/ss03/index.php