Lineare Algebra und analytische Geometrie I — Übungen —

Blatt 6 WS 2003/2004

Aufgabe 1 (4 Punkte)

Wir betrachten die symmetrische Gruppe \mathfrak{S}_n , $n \in \mathbb{N}$.

- a) Eine Element $\tau_k \in \mathfrak{S}_n$ definiert durch $\tau_k = (k-k+1)$ mit $1 \le k < n$ heißt Nachbartransposition. Zeigen Sie, dass sich jede Permutaion $\sigma \in \mathfrak{S}$ als Produkt von Nachbartranspositionen darstellen läßt. (Informatiker sollten hier an 'Bubblesort' denken.)
- b) Zeigen Sie, dass \mathfrak{S}_n von den Elementen $\sigma = (1 \ 2 \ \dots \ n)$ und $\tau_1 = (1 \ 2)$ erzeugt wird.

Aufgabe 2 (4 Punkte

Es seien α , $\beta, \gamma \in \mathbb{R}$ und $u = (1, \alpha, \alpha^2)$, $v = (1, \beta, \beta^2)$, $w = (1, \gamma, \gamma^2) \in \mathbb{R}^3$ gegeben. Für welche Werte von α, β, γ sind die Vektoren u, v, w als Elemente des \mathbb{R} -Vektorraumes $V = \mathbb{R}^3$ linear abhängig.

Aufgabe 3 (4 Punkte)

Sind die vier Vektoren

$$(1,2,3,4), (2,9,6,8), (3,12,17,12), (4,18,21,27)$$

linear unabhängig im K-Vektorraum $V = K^4$, wobei

a)
$$K = \mathbb{R}$$
 b) $K = \mathbb{Q}$ c) $K = \mathbb{F}_3$ d) $K = \mathbb{F}_{11}$ e) $K = \mathbb{F}_{13}$.

Aufgabe 4 (4 Punkte)

Es seien eine Menge M und ein Körper K gegeben.

a) Zeigen Sie, dass die Menge K^M aller Abbildungen von M nach K mit den argumentweisen Verknüpfungen

$$(f+g)(m) = f(m) + g(m) , \quad (\lambda f)(m) = \lambda f(m),$$

(hierbei sind $f, g \in K^M$, $m \in M$ und $\lambda \in K$) einen K-Vektorraum bilden.

b) Es sei M eine Menge mit unendlich vielen Elementen und K ein beliebiger Körper. Finden Sie eine Teilmenge $\mathfrak{B} \subset K^M$ mit unendlich vielen Elementen und der folgenden Eigenschaft:

Für jede endliche Teilmenge $B \subset \mathfrak{B}$ sind die Elemente von B linear unabhängig.

Punkte: Insgesamt sind 16 Punkte erreichbar.

Abgabe: Einwurf in den Briefkasten in der Eingangshalle bis spätestens Mittwoch, 26.11.2003, 10:00 Uhr.