Gewöhnliche Differentialgleichungen

10. Übungsblatt, SS 2004

Abgabe bis Freitag, 2. Juli 2004, 10.00 Uhr, in die Kästen im Foyer.

Aufgabe 1

Es sei S_{α} das autonome System $x' = g_{\alpha}(x, y), \ y' = h_{\alpha}(x, y)$. Geben Sie zu $0 < \alpha < \pi$ ein System S_{α} an, dessen Trajektorien die des Systems S_0 im Winkel α schneiden.

Aufgabe 2

a) Bestimmen Sie die Nullklinen und stationären Punkte des autonomen Systems

$$x' = -y + xy$$
$$y' = x - xy - x^2$$

und skizzieren Sie das Richtungsfeld. Zeigen Sie allein anhand dessen, dass die Halbebene $H = \{(x,y): x>1\}$, ihre untere Hälfte $Q = \{(x,y): x>1, \ y<0\}$ und deren Hälfte $\Delta = \{(x,y): x>1, \ y<1-x\}$ vorwärts invariant sind.

b) Es seien 0 < h < 2 und $0 < r < 2\sqrt{3}$. Zeigen Sie, dass für das autonome System

$$x'_1 = -4x_1 + x_2 + x_3 + x_2x_3$$

$$x'_2 = -4x_2 + x_3 + x_1 + x_3x_1$$

$$x'_3 = -4x_3 + x_1 + x_2 + x_1x_2$$

jeder Würfel $W = \{x \in \mathbb{R}^3 : |x|_{\infty} \le h\}$ und jede Kugel $K = \{x \in \mathbb{R}^3 : |x| \le r\}$ positiv invariant sind. (Dabei ist $|\cdot|$ die Euklidnorm und $|\cdot|_{\infty}$ die Maximumnorm.)

Aufgabe 3

Zeigen Sie für x'=f(x) im Gebiet $D\subset \mathbb{R}^n$ die folgenden Aussagen:

- a) Ist $V \in C^1(D)$ mit $f(x) \cdot \nabla V(x) \leq 0$ für $x \in D$, so ist $M = \{x \in D : V(x) \leq c\}$ positiv invariant.
- b) Sind $M_1, M_2 \subset D$ positiv invariant, so ist auch $M_1 \cap M_2$ positiv invariant.

Aufgabe 4

Gegeben sei das autonome System

$$x' = x - (x + y)(x^2 + y^2)$$
 $y' = y - (y - x)(x^2 + y^2).$

- a) Transformieren Sie das System mit Hilfe von Polarkoordinaten.
- b) Lösen Sie das transformierte System. Interpretieren Sie die Lösung in der xy-Ebene.