Funktionentheorie I

7. Übungsangebot, SS 2004

Abgabe: Dienstag, 15. Juni, 12.00 Uhr in den Kasten

Aufgabe 1 Partialbruchzerlegung meromorpher Funktionen

Es sei $(z_k)_{k\in\mathbb{N}}$ die Folge der Polstellen von $f(z)=\frac{1}{\sin\pi z\ \sinh\pi z}$ in $\mathbb{C}\setminus\{0\}$.

- a) Bestimmen Sie $c_k = \operatorname{Res}_{z_k} f, k \in \mathbb{N}$.
- b) Zeigen Sie

$$f(z) = \frac{1}{(\pi z)^2} + \sum_{k \in \mathbb{N}} \frac{c_k}{z - z_k} + C \quad \text{mit } C \in \mathbb{C}.$$

c) Betrachten Sie f auf $\{z \in \mathbb{C} : \operatorname{Re} z = \operatorname{Im} z > 0\}$, und folgern Sie C = 0.

Aufgabe 2 Unendliche Produkte

Untersuchen Sie folgende Produkte auf Konvergenz. Berechnen Sie im Falle von a) und b) gegebenenfalls auch den Wert des Produktes.

a)
$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right)$$
 b) $\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}$ c) $\prod_{n=1}^{\infty} \frac{n}{n + 1}$ d) $\prod_{n=1}^{\infty} \left(1 - \frac{(-1)^n}{\sqrt{n}}\right)$ e) $\prod_{n=2}^{\infty} \sqrt[n]{n}$ f) $\prod_{n=2}^{\infty} \sqrt[n^2]{n}$ g) $\prod_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$

Aufgabe 3 Darstellung eines unendlichen Produktes

Gegeben sei eine streng monoton steigende Folge natürlicher Zahlen $(n_k)_{k\in\mathbb{N}}$ mit $n_1>1$ sowie

$$f(z) = \prod_{k=1}^{\infty} (1 - n_k^{-z}), \quad \text{Re } z > 1.$$

- a) Zeigen Sie die lokal gleichmässige Konvergenz des Produktes sowie, daß f nullstellenfrei ist.
- b) Beweisen Sie die Existenz einer für Rez>1/2holomorphen Abbildung gmit

$$\log f(z) = -\sum_{k=1}^{\infty} n_k^{-z} + g(z).$$

Aufgabe 4 Unendliche Blaschkeprodukte

Konstruieren Sie mit Hilfe eines Blaschkeproduktes eine Funktion $f:\mathbb{D}\to\mathbb{C}$ mit der Eigenschaft, daß jeder Punkt $z\in\partial\mathbb{D}$ Häufungspunkt von Nullstellen ist. Hinweis: Verwenden Sie, daß $(e^{in})_{n\in\mathbb{N}}$ dicht liegt in $\partial\mathbb{D}$.