Lineare Algebra und analytische Geometrie II — Übungen —

Blatt 11 SS 2004

Aufgabe 1 (4 Punkte)

Es seien V ein euklidischer Vektorraum endlicher Dimension, $a \in V$ ein Vektor der Länge Eins und $G := b + \operatorname{sp}(a)$, $b \in V$, eine Gerade. Zeigen Sie, dass jede involutorische Bewegung, die genau die Punkte der Geraden G festhält, die Form

$$S_G: V \to V, \ v \mapsto 2\langle v, a \rangle a - v + 2(b - \langle b, a \rangle a)$$

besitzt. S_G heißt die Spiegelung an der Geraden G.

Anleitung: Zeigen Sie zuerst für Bewegungen φ, ψ die folgenden Aussagen $(p \in V \text{ heißt})$ Fixpunkt von φ , wenn $\varphi(p) = p$ ist).

- a) Ist H eine Gerade durch den Nullpunkt und L eine involutorische Isometrie, die genau die Punkte der Geraden H festhält, so existiert eine ON-Basis von V, so dass L durch die Matrix $A := \operatorname{diag}(-1, \ldots, -1, 1)$ beschrieben wird.
- b) Es sei $a \in V$ mit |a| = 1, $H = \operatorname{sp}(a)$, dann wird die Isometrie L aus Aufgabenteil a) durch die folgende Abbildung S_H beschrieben:

$$S_H: V \to V, \ v \mapsto 2\langle v, a \rangle a - v.$$

- c) φ involutorisch $\Leftrightarrow \psi \varphi \psi^{-1}$ involutorisch.
- d) $p \in V$ Fixpunkt von $\varphi \Leftrightarrow \psi(p)$ Fixpunkt von $\psi \varphi \psi^{-1}$.

Aufgabe 2 (4 Punkte)

Es sei V ein \mathbb{C} -Vektorraum mit \mathbb{C} -Basis v_1, v_2, \ldots, v_n .

- a) Zeigen Sie, dass V auch ein \mathbb{R} -Vektorraum ist und dass $v_1, v_2, \ldots, v_n, \mathbf{i}v_1, \mathbf{i}v_2, \ldots, \mathbf{i}v_n$ eine \mathbb{R} -Basis von V als \mathbb{R} -Vektorraum ist ($\mathbf{i}^2 = -1$).
- b) Es sei $L:V\to V$ eine \mathbb{R} -lineare Abbildung mit Darstellungsmatrix C bzgl. der \mathbb{R} -Basis $v_1,v_2,\ldots,v_n,\mathbf{i}v_1,\mathbf{i}v_2,\ldots,\mathbf{i}v_n$ von V. Zeigen Sie:
 - i) $L \text{ ist } \mathbb{C} \text{linear } \Leftrightarrow C = \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \text{ mit geeigneten } A, B \in \mathbb{R}^{(n,n)}.$
 - ii) L ist \mathbb{C} antilinear \Leftrightarrow $C = \begin{pmatrix} A & B \\ B & -A \end{pmatrix}$ mit geeigneten $A, B \in \mathbb{R}^{(n,n)}$.

Aufgabe 3 (4 Punkte)

Es sei $(v_i)_{i\in\mathbb{N}}$ ein abzählbares UN-System des unitären Vektorraumes V. Für $k\in\mathbb{N}$ definieren wir $U_k := \operatorname{sp}(v_1, v_2, \dots, v_k)$. Dann gilt $V = U_k \oplus U_k^{\perp}$. Ferner sei $P_k : V \to U_k$ die senkrechte Projektion von V auf U_k . Zeigen Sie:

- a) Für alle $v \in V$ gilt: $P_k(v) = \sum_{i=1}^k H(v, v_i)v_i$.
- b) Für alle $\xi_1, \dots, \xi_n \in \mathbb{C}$ und $v \in V$ gilt:

$$\left| v - \sum_{i=1}^{k} \xi_i v_i \right|^2 \ge \left| v - \sum_{i=1}^{k} H(v, v_i) v_i \right|^2 = |v|^2 - \sum_{i=1}^{k} |H(v, v_i)|^2 \ge 0$$

wobei in der ersten Ungleichung genau dann Gleichheit gilt, wenn $\xi_i = H(v, v_i)$, $1 \le i \le k$, ist.

c) Es gilt die Besselsche Ungleichung:

$$\sum_{i=1}^{\infty} |H(v, v_i)|^2 \le |v|^2.$$

(Die Größen $H(v, v_i)$ heißen die komplexen Fourier-Koeffizienten von v bzgl. $(v_i)_{i \in \mathbb{N}}$.)

Aufgabe 4 (4 Punkte)

Es sei $\mathcal{A} := AG(V, K) := (\mathcal{P}, \mathcal{G})$ der affine Raum über V. Beweisen Sie den Strahlensatz, d.h. die folgende Aussage:

Sind $G, H \in \mathcal{G}$ zwei Geraden, die sich in genau einem Punkt $p \in \mathcal{P}$ schneiden, und $a, b \in G, c, d \in H$ Punkte mit a, b, c, d, p paarweise verschieden, dann sind die folgenden Aussagen äquivalent:

- a) $\overline{a,c}$ ist parallel zu $\overline{b,d}$.
- b) TV(p, a; b) = TV(p, c; d).