UNIVERSITÄT DORTMUND INSTITUT FÜR ANALYSIS Prof. Dr. K. Menke

Analysis I für Lehramt Gymnasium

9. Übungsblatt, WS 2004/05

Abgabe bis Montag, 13. Dezember 2004, 10.00 Uhr, in die Kästen im Foyer.

Aufgabe 1

Gegeben seien die Funtionen $f: \mathbb{R} \to \mathbb{R}$ und $g:]-\infty, 0[\cup]0, 1] \to \mathbb{R}$ mit:

$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2} & \text{für } x \neq 0 \\ \frac{1}{2} & \text{für } x = 0 \end{cases} \qquad g(x) = \begin{cases} e^{\sin x} & \text{für } x < 0 \\ \sqrt{x^3 + \sqrt{1 - x^2}} & \text{für } 0 < x \leq 1 \end{cases}$$

- a) Zeigen Sie, dass f stetig in 0 ist, indem Sie den Grenzwert $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$ auswerten.
- b) Prüfen Sie g auf Stetigkeit. Läßt sich g in 0 stetig ergänzen?

Aufgabe 2

Gegeben sei das Polynom $P(x) = 4x^3 - 21x^2 + 16x + 5$. Zeigen Sie (ohne die Nullstellen auszurechnen), daß P in [-2,0] und [0,2] jeweils eine Nullstelle besitzt, und führen Sie ausgehend von diesen Intervallen jeweils 4 Schritte der Intervallhalbierung durch, um eine Näherung für diese Nullstellen zu bekommen. Besitzt P noch weitere Nullstellen?

Aufgabe 3

- a) Der Grad n des Polynoms $P(x) = x^n + a_{n-1}x^{n-1} + ... + a_0$ sei ungerade, und es seien a < b gegeben mit P(a) > 0 und P(b) < 0. Zeigen Sie, dass P mindestens drei verschiedene Nullstellen besitzt.
- b) Zeigen Sie, dass eine stetige Funktion $f:[0,1] \to [0,1]$ einen Fixpunkt besitzt, d.h. ein $x_0 \in [0,1]$ mit $f(x_0) = x_0$. (*Hinweis:* Untersuchen Sie f(x) x.)

Aufgabe 4

Bestimmen Sie (falls existent) Minimum und Maximum von f auf I (d.h. von f(I)) für:

a)
$$f(x) = (x^2 - 1)e^x$$
 $I = [0, 1]$ bzw. $I = [0, 1]$ bzw. $I = [0, 1]$

b)
$$g(x) = \sin \frac{1}{x}$$
 $I =]0, \pi]$ bzw. $I =]0, \pi[$

c)
$$h(x) = \begin{cases} -x^3 & \text{für } x < 0 \\ \frac{1}{2} + x^2 & \text{für } x \ge 0 \end{cases}$$
 $I = [-1, 1]$