Abgabe: Di, 14.12.2004, 16h

Aufgabe 1:

Untersuchen Sie die folgenden Vektoren des \mathbb{R}^3 auf lineare Abhängigkeit:

- a) (1,-2,1), (2,1,-1), (7,-4,1),
- b) (1,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5),
- c) (1,2,-3), (1,-3,2), (2,-1,5),
- d) (-1, -1, -1), (0, 0, 0), (1, 1, 1)

Aufgabe 2:

Es sei V ein K-Vektorraum. Weiter seien $\vec{v}_1, \ldots, \vec{v}_n \in V$ linear unabhängig. Zeigen Sie:

- a) Für $a_1, \ldots, a_n \in K^* := K \setminus \{0\}$ ist $a_1 \vec{v}_1, \ldots, a_n \vec{v}_n$ wieder linear unabhängig.
- b) Für $\vec{w} := b_1 \vec{v}_1 + \ldots + b_i \vec{v}_i + \ldots + b_n \vec{v}_n$, $b_1, \ldots, b_n \in K$, $b_i \neq 0$ ist $\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{w}, \vec{v}_{i+1}, \ldots, \vec{v}_n$ wieder linear unabhängig.

Übungsblatt 9

c) $\langle \vec{v}_1, \dots, \vec{v}_i \rangle \cap \langle \vec{v}_{i+1}, \dots, \vec{v}_n \rangle = \{\vec{0}\}$

Aufgabe 3:

- a) Beweisen Sie: Zwei Vektoren (a, b) und (c, d) des \mathbb{R}^2 sind genau dann linear abhängig, wenn ad = bc ist.
- b) Es seien $\vec{x}, \vec{y}, \vec{z}$ Vektoren des \mathbb{R}^3 , die paarweise linear unabhängig sind. Folgt daraus, dass $\vec{x}, \vec{y}, \vec{z}$ linear unabhängig voneinander sind? (Beweis oder Gegenbeispiel)

Aufgabe 4:

- a) Im Vektorraum \mathbb{R}^2 seien die Vektoren $\vec{v}_1 = (2,4), \vec{v}_2 = (-2,1), \vec{v}_3 = (1,-5)$ gegeben. Welche Figur erhält man, wenn man (ausgehend vom Nullpunkt) alle Vektoren der Form $r_1\vec{v}_1 + r_2\vec{v}_2 + r_3\vec{v}_3$ mit $0 \le r_i \le 1$ (i=1,2,3) abträgt?
- b) Im \mathbb{R}^n $(n \geq 3)$ seien vier Punkte A, B, C und D mit den Ortsvektoren $\vec{a}, \vec{b}, \vec{c}$ bzw. \vec{d} , von denen je drei linear unabhängig sind, gegeben. Der Streckenzug ABCDA stellt ein (im allgemeinen nichtebenes) Viereck dar.

Zeigen Sie:

Das Viereck, dessen Ecken die Seitenmitten des gegebenes Vierecks ABCD sind, ist ein Parallelogramm.