Universität Dortmund Fachbereich Mathematik Prof. Dr. H. M. Möller Dipl.-Math. C. Scholz

Symbolisches Rechnen 14. Übung

Aufgabe 50 Seien
$$u = \sqrt[3]{-1 + \sqrt{-\frac{98}{27}}}$$
, $v = \sqrt[3]{-1 - \sqrt{-\frac{98}{27}}}$. Zeigen Sie, dass $u + v = 2$ gilt.

Aufgabe 51 Bringen Sie

$$\frac{5 - 2\sqrt{3} + \sqrt{6}}{2 + \sqrt{3} + \sqrt{2} + \sqrt{6}}$$

auf Normalform.

Aufgabe 52 Sei

$$\mathfrak{a} = \langle x^2 - 2y^2 + 7x + 8y - 8, xy + 2y^2 - 8x - 8y + 8 \rangle \subset \mathbb{Q}[x, y]$$

- (i) Bestimmen Sie die reduzierte Gröbnerbasis von \mathfrak{a} bezüglich der graduiert lexikographischen Termordnung mit x > y.
- (ii) Entscheiden Sie, ob $f = x^2y 1 \in \mathfrak{a}$ ist.
- (iii) Bestimmen Sie mit dem FGLM-Algorithmus eine Gröbnerbasis von $\mathfrak a$ bezüglich der lexikographischen Termordnung mit x>y.
- (iv) Bestimmen Sie $V(\mathfrak{a})$ mit Hilfe von (iii).
- (v) Berechnen Sie $\mathfrak{a} \cap \mathbb{Q}[x]$, $\mathfrak{a} \cap \mathbb{Q}[y]$ und $\sqrt{\mathfrak{a}}$.
- (vi) Bestimmen Sie die Abbildungsmatrizen A_x^T und A_y^T bezüglich der graduiert lexikographischen Gröbnerbasis von $\sqrt{\mathfrak{a}}$ und bestimmen Sie $V(\sqrt{\mathfrak{a}})$ mit Hilfe der Eigenwerte und Eigenvektoren einer der beiden Matrizen.

Abgabe: Donnerstag, den 3.2.2005 bis 12.15 Uhr in den Briefkästen im Mathematikgebäude.