2. Übungsblatt zur Vorlesung "Funktionentheorie I"

Abgabe bis Fr. 22.04.2005

Aufgabe 2:

Eine Reihe der Form $\sum a_n(z-z_0)^n:=\sum_{n=0}^\infty a_n(z-z_0)^n$ mit $a_n,z_0\in\mathbb{C}$, heißt (KOMPLEXE) POTENZREIHE. Es sei $\mu:=\limsup_{n\to\infty}\sqrt[n]{|a_n|}\in\mathbb{R}\cup\{\infty\}$.

Wir nennen $R:= egin{cases} \mu^{-1} & \text{falls } \mu \neq 0, \infty \\ \infty & \text{falls } \mu = 0 & \text{den Konvergenzradius der Potenzreihe und } \\ 0 & \text{falls } \mu = \infty \end{cases}$

nennen ihn POSITIV wenn $R \neq 0$. Wir bezeichnen mit $B_{\rho}(w) = \{z \in \mathbb{C} | |z - w| < \rho\}$ die offene Kreisscheibe um $w \in \mathbb{C}$ mit Radius $\rho \in \mathbb{R} \cup \{\infty\}$. Dabei ist $B_{\infty}(w) = \mathbb{C}$ und $B_0(w) = \{w\}$.

- i) [Konvergenz von Potenzreihen]. Seien $\sum a_n(z-z_0)^n$, μ und R wie oben. Zeigen Sie, dass die Potenzreihe für $z \in B_R(z_0)$ konvergiert und für $z \in \mathbb{C} \setminus \overline{B_R(z_0)}$ divergiert. Hinweis: Unterscheiden Sie die drei Fälle $R \in (0, \infty)$, R = 0 und $R = \infty$ und schauen Sie sich den Beweis für relle Potenzreihen noch einmal an.
- ii) ["Ableitung" einer Potenzreihe]. Sei $k \in \mathbb{N}$ und die Potenzreihe $\sum a_n(z-z_0)^n$ habe den Konvergenzradius R > 0. Zeigen Sie, dass die Potenzreihe

$$\sum (n+k)\cdots(n+1)a_{n+k}(z-z_0)^n$$

den gleichen Potenzradius hat.

Aufgabe 3: [Summe und Cauchyprodukt von Potenzreihen]

Seien $a(z)=\sum a_nz^n$ und $b(z)=\sum b_nz^n$ zwei Potenzreihen mit positiven Potenzradien $R_a,R_b>0$. Dann konvergieren die Summe

$$(a+b)(z) = \sum (a_n + b_n)z^n$$

sowie das Cauchyprodukt

$$(ab)(z) = \sum c_n z^n$$
, mit $c_n = \sum_{k=0}^n a_k b_{n-k}$

mit Konvergenzradien $R \ge \min\{R_a, R_b\}$.

Hinweis: Schauen Sie sich den Beweis im Reellen noch einmal an.

Aufgabe 4: [Identitätssatz für Potenzreihen]

Die beiden Potenzreihen $a(z) = \sum a_n(z-z_0)^n$ und $b(z) = \sum b_n(z-z_0)^n$ mögen beide den Konvergenzradius R haben. Ausserdem gebe es eine gegen z_0 konvergierende Folge (z_k) in $\mathbb{C} \setminus \{z_0\}$ so dass für alle Folgenglieder $a(z_k) = b(z_k)$ ist. Dann sind die beiden Potenzreihen identisch, das heißt es gilt $a_n = b_n$ für alle n.

Aufgabe 5: [Holomorphie von Potenzreihen]

Sei $\sum a_n(z-z_0)^n$ eine Potenzreihe mit positivem Konvergenzradius R>0. Zeigen Sie, dass

$$f: B_R(z_0) \to \mathbb{C}, \qquad f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

holomorph in $B_R(z_0)$ ist, und für die Ableitung von f

$$f'(z) = \sum n \, a_n (z - z_0)^{n-1} \quad \forall \, z \in B_R(z_0) \,.$$

gilt.

Aufgabe 6: [Spielerei mit Additionstheoremen]

Es seien $e^z = \sum \frac{1}{n!} z^n$, $\cos z = \sum \frac{(-1)^n}{(2n)!} z^{2n}$ und $\sin z = \sum \frac{(-1)^n}{(2n+1)!} z^{2n+1}$ die in der Vorlesung vorgestellten Potenzreihen. Man zeigt (fast) leicht die wichtigen Identitäten

$$e^{iz} = \cos z + i \sin z$$
 und $e^{z+w} = e^z e^w$

und damit $\cos z=\frac{1}{2}(e^{iz}+e^{-iz})=\cos(-z)$ und $\sin z=\frac{1}{2i}(e^{iz}-e^{-iz})=-\sin(-z)$. Daraus folgen (wirklich) leicht die **Formel von Moivre**

$$(\cos z + i\sin z)^m = \cos(mz) + i\sin(mz),$$

sowie die bekannten Additionstheoreme

$$\cos(z+w) = \cos z \cos w - \sin z \sin w \quad \text{und} \quad \sin(z+w) = \cos z \sin w + \sin z \cos w.$$

Das alles (und noch viel mehr) dürfen sie benutzen, um die folgenden Aufgaben zu lösen.

i) Zeigen Sie

$$\sum_{k=0}^{n} \cos(kz) = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})z}{2\sin(\frac{z}{2})}.$$

ii) Stellen Sie $\cos^n z$ (und analog $\sin^n z$) als Linearkombination der Funktionen $\sin(kz)$ und $\cos(kz)$, $k = 0, \ldots, n$, dar.

Hinweis zu i): Geometrische Reihe.