Übungen zur linearen Algebra und analytischen Geometrie II Übungsblatt 7

Abgabe: Mo, 30.05.2005, 14h

Aufgabe 1:

a) Sei V der Vektorraum der Polynome vom Grad ≤ 5 , $B = \{v_0, \ldots, v_5\} = \{1, \ldots, x^5\}$ eine Basis. Definiere

$$\varphi: V \to \mathbb{R}, \quad p(x) \mapsto \int_0^1 p(x) dx$$

- i) Zeigen Sie: φ ist eine Linearform (aus V^*).
- ii) Berechne die Darstellungsmatrix von φ bzgl. der Basen B von V und 1 von \mathbb{R} .
- iii) Stelle φ als Linear kombination in B^* dar.
- b) Definiere $\psi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ durch $\psi\left(\left(\begin{array}{c} a \\ b \end{array}\right), \left(\begin{array}{c} c \\ d \end{array}\right)\right) \mapsto ad-bc$.
 - i) Zeigen Sie: ψ ist eine Bilinearform.
 - ii) Berechnen Sie die Gramsche Matrix von ψ bzgl. der Basis $B = \{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \end{pmatrix} \}.$
 - iii) Berechne $\psi\left(\begin{pmatrix}4\\2\end{pmatrix},\begin{pmatrix}3\\5\end{pmatrix}\right)$ einmal direkt und einmal über die eben berechnete Gramsche Matrix (mit den Koordinatenvektoren von $\begin{pmatrix}4\\2\end{pmatrix}$ und $\begin{pmatrix}3\\5\end{pmatrix}$).

Aufgabe 2:

Sei V ein Vektorraum, U < V ein Unterraum. Definiere den Annulator von U als

$$U^0 = \{ \varphi \in V^* : \varphi(u) = 0 \ \forall u \in U \} \subset V^*.$$

Zeigen Sie:

- a) U^0 ist Unterraum von V^* .
- b) dim $U^0 = \dim V \dim U$. Hinweis: Wähle feste Basis von U, ergänze zu einer Basis $B = \{u_1, \dots, u_l, v_1, \dots, v_k\}$ von $V \Rightarrow$ Die Linearformen $\{v_1^*, \dots, v_k^*\}$ aus B^* sind eine Basis von U^0 .

Aufgabe 3:

Für die symmetrischen Bilinearformen, die durch die Matrizen

$$\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} \in M_2(\mathbb{R})$$

definiert seien, gebe man eine gemeinsame Orthogonalbasis an.

Aufgabe 4:

Sei

$$A := \begin{pmatrix} 1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & -4 & 8 \end{pmatrix} \in M_3(\mathbb{R}).$$

- a) Bestimmen Sie eine Diagonalmatrix, zu der A kongruent ist.
- b) Geben Sie eine Orthogonalbasis von \mathbb{R}^3 für die durch A auf \mathbb{R}^3 definierte Bilinearform an.