Prof. Dr. M. Voit SS 2005

Stochastik I

Blatt 7

Abgabetermin: Freitag, 27. Mai 2005, in die Briefkästen im Foyer

Wiederholen Sie folgende Begriffe:

Meßraum, Maßraum, Wahrscheinlichkeitsraum, Maß und Prämaß, Fortsetzungssatz von Caratheodory, Verteilungsfunktion, Gleichverteilung auf einem Intervall, Normalverteilung, Exponentialverteilung.

Aufgabe 1

Es sei $A \subset \mathbb{R}$ eine höchstens abzählbare Menge. Zeigen Sie, dass die Borel- σ -Algebra $\mathcal{B}(A)$ auf A mit $\mathcal{P}(A)$ übereinstimmt.

Aufgabe 2

Bestimmen Sie formelmäßig die Verteilungsfunktion F der folgenden Verteilungen auf \mathbb{R} und skizzieren Sie F grob (mit den wesentlichen Details):

- a) Der Binomialverteilung $B_{3, 1/2}$;
- b) Der geometrischen Verteilung mit Index p = 1/2;
- c) Der Gleichverteilung auf dem Intervall [0, 2] (mit Dichte f(x) = 1/2 auf [0, 2]).

Aufgabe 3 Die Gedächtnislosigkeit der Exponentialverteilungen

- a) Es sei P eine Exponentialverteilung auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Zeigen Sie: $\forall x, t > 0$: $P(|x + t, \infty[\mid |t, \infty[) = P(|x, \infty[).$
- b) Es sei P ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mit einer stetigen Verteilungsfunktion F mit F(0) = 0, so dass \circledast gilt. Zeigen Sie, dass P eine Exponentialverteilung ist. **Tipp:** (Für $x \in \mathbb{Q}, x > 0$ gilt $1 - F(x) = (1 - F(1))^x$.)

Aufgabe 4 Gamma-Verteilungen

a) Die Gamma-Funktion ist gegeben durch das uneigentliche Riemann-Integral

$$\Gamma(t) := \int_0^\infty x^{t-1} e^{-x} dx \quad (t > 0).$$

Zeigen Sie:

- i) $\Gamma(t+1) = t \cdot \Gamma(t)$ $(t \ge 0)$. (Tipp: Partielle Integration).
- ii) $\Gamma(n+1) = n! \quad (n \in \mathbb{N}_0).$
- b) Die Gamma-Verteilung mit Parametern $\alpha, v > 0$ ist definiert als Wahrscheinlichkeitsmaß auf \mathbb{R} mit Lebesgue-Dichte

$$f_{\alpha,v}(x) = \begin{cases} c_{\alpha,v} \cdot x^{v-1} e^{-\alpha x} & x > 0\\ 0 & x \le 0. \end{cases}$$

Bestimmen Sie mithilfe der Gamma-Funktion die Konstante $c_{\alpha,v} > 0$, so dass $f_{\alpha,v}$ die Dichte eines Wahrscheinlichkeitsmaßes ist.

Aufgabe 5* Das Cox-Ross-Rubinstein-Modell

Es seien $p \in]0,1[$ und 0 < d < 1 < u Parameter. Im CRR-Binomialmodell zur Modellierung von Aktienkursentwicklungen startet der Kurs zur Zeit 0 mit Preis 1. In jedem Zeitschritt $n \to n+1$ $(n \in \mathbb{N}_0)$ ergibt sich der Preis S_{n+1} zur Zeit n+1 aus dem Preis S_n zur Zeit n durch

$$P(S_{n+1} = x \cdot u | S_n = x) = p, \quad P(S_{n+1} = x \cdot d | S_n = x) = 1 - p.$$

Zeigen Sie:

a) Ist $(X_n)_{n\geq 1}$ eine Folge unabhängiger, identisch verteilter Zufallsvariabler mit Verteilung $p\delta_u + (1-p)\delta_d$, so ist

$$(S_n := \prod_{k=1}^n X_k)_{n \ge 0}$$

(mit $S_0 \equiv 1$ per definitionem) eine Markov-Kette auf dem Zustandsraum

$$E := \{ u^k \cdot d^l : k, l \in \mathbb{N}_0 \} \subset \mathbb{R},$$

2

die die Preisenentwicklung im CRR-Modell wiedergibt.

b) Bestimmen Sie für $n \in \mathbb{N}$ die Verteilung von S_n .