Analysis III für Lehramt Gymnasium

7. Übungsblatt, WS 2005/06

Abgabe bis Freitag, 9. Dezember 2005, 10.00 Uhr, in den Kasten 31 im Foyer.

Aufgabe 1

a) Es sei $\{q_n\}$ eine Abzählung von $[0,1]^2\cap\mathbb{Q}^2$ und für jedes n sei Q_n ein Quadrat mit $q_n\in Q_n$ und dem Lebesque-Mass $\lambda(Q_n)=2^{-n-1}$. Zeigen Sie, dass die Menge

$$M := [0,1]^2 \setminus \bigcup_{n \in \mathbb{N}} Q_n$$

keine inneren Punkte besitzt und, dass $\lambda(M) \geq \frac{1}{2}$ gilt.

b) Gilt für offene Mengen $D \subset X$ im allgemeinen $\lambda(\overline{D}) = \lambda(D)$?

Aufgabe 2

Berechnen Sie im Falle der Existenz den folgenden Grenzwert:

$$\lim_{n \to \infty} \int_{[-1,1]} \frac{1}{1 + x^{2n}} \, dx$$

Aufgabe 3

- a) Berechnen Sie das Lebesque-Integral $\int_{(0,\infty)} \frac{1}{1+e^{3x}} dx$.
- b) Es sei $f(x) := \frac{x^{\alpha}}{1 + x^{\beta}}$. Für welche $\alpha, \beta \in \mathbb{R}$ ist $f \in \mathcal{L}_1(1, \infty)$?

Aufgabe 4

Berechnen Sie folgende Parameterintegrale:

a)
$$\int_{0}^{\infty} \frac{1 - e^{-xy}}{ye^{y}} dy \quad (x > -1)$$
 b) $\int_{0}^{\infty} \frac{\arctan(xy)}{y(1 + y^{2})} dy \quad (x \ge 0)$

Hinweis: Es gilt für
$$x \neq 1$$
: $\frac{1}{(1+y^2)(1+x^2y^2)} = \frac{x}{x^2-1} \frac{x}{1+x^2y^2} - \frac{1}{x^2-1} \frac{1}{1+y^2}$