UNIVERSITÄT DORTMUND

Fachbereich Mathematik Institut für Analysis Prof. Dr. W. Kaballo Dipl.-Math. M. Hadac

Übungsaufgaben Funktionalanalysis I (WS 2005/06), Blatt 2
Abgabe: Donnerstag, den 03.11.05, in der Übungsgruppe

Aufgabe 5:

Es seien $a, b \in \mathbb{R}$ mit a < b und $f, g \in \mathcal{C}([a, b])$. Weiter sei $1 \le p \le \infty$ und p' gegeben durch $\frac{1}{n} + \frac{1}{n'} = 1$.

a) Man beweise die Höldersche Ungleichung

$$||fg||_{L_1([a,b])} \le ||f||_{L_p([a,b])} ||g||_{L_{p'}([a,b])}.$$

b) Man beweise die Minkowskische Ungleichung

$$||f + g||_{L_p([a,b])} \le ||f||_{L_p([a,b])} + ||g||_{L_p([a,b])}.$$

Aufgabe 6: Man bestimme, welche der Räume ℓ_p (für $1 \le p \le \infty$) und c_0 separabel sind.

Aufgabe 7: Es sei $1 \le p < \infty$ und $M \subseteq \ell_p$. Man zeige, dass M genau dann kompakt ist, falls M beschränkt und abgeschlossen ist und es zu jedem $\varepsilon > 0$ ein $k_0 \in \mathbb{N}$ gibt, so dass $\sum_{k=k_0}^{\infty} |x_k|^p < \varepsilon$ für alle $x = (x_k)_{k \in \mathbb{N}} \in M$ gilt.

Aufgabe 8: Ein abgeschlossener Unterraum U eines normierten Raumes X heißt invariant unter dem Operator $T \in L(X)$, falls $T(U) \subseteq U$. Man finde unendlich viele invariante Unterräume für den Shiftoperator $S \in L(\ell_2)$, $S(x_0, x_1, x_2, \dots) := (0, x_0, x_1, \dots)$.