9. Aufgabenblatt zur Numerik 1

Abgabe: 04.01.2006, 18.00 Uhr in die Kästen im Foyer

Aufgabe 1 Numerischer Aufwand bei Polynominterpolation (4 Punkte)

Es sei $p \in P_n$ das Lagrangesche Interpolationspolynom zu n+1 paarweise verschiedenen Stützstellen x_0, \ldots, x_n und den zugehörigen Stützwerten y_0, \ldots, y_n . Bestimmen Sie die Anzahl der benötigten arithmetischen Operationen zur Berechnung von $p(\xi)$ an einer Stelle ξ

- a) bei Verwendung der Lagrangeschen Darstellung von p,
- b) bei Verwendung der Newtonschen Darstellung von p,
- c) bei Anwendung des Neville-Algorithmus.

Aufgabe 2 Spline-Interpolation (4 Punkte)

Es sei S_0 der Raum aller kubischen natürlichen Splinefunktionen zu den Stützstellen $x_0=0,\ x_1=1,\ x_2=2.$

- a) Welche der folgenden Funktionen sind aus S_0 ?
 - i) $f(x) = x^3 x^2$,
 - ii) $f(x) = x^2(x-6) (x-2)^3$
 - iii) $f(x) = \max\{0, (x-1)^3\} 1/2x^3$.
- b) Bestimmen Sie den interpolierenden Spline $s_2 \in S_0$ zu $f(x) = x^3$. Wie lautet das Ergebnis, wenn die natürlichen Randbedingungen durch $s_2''(x_0) = f''(x_0), s_2''(x_2) = f''(x_2)$ ersetzt werden?

Aufgabe 3 Bestapproximation (4 Punkte)

Gegeben sei $f:[-1,1]\to\mathbb{R}$ mit $f(x)=\cos\pi x$. Berechnen Sie Bestapproximationen im Polynomraum P_2 bzgl. der L^2 -Norm (Gauß-Approximation) und bzgl. der Maximumsnorm (Tschebyscheff-Approximation). Vergleichen Sie die L^2 -Norm und die Maximumsnorm der Fehler.

Aufgabe 4 Tschebyscheff Polynome (4 Punkte)

a) Zeigen Sie die folgende Darstellung der Tschebyscheff-Polynome:

$$T_n(x) = \frac{1}{2} \left[\left(x - \sqrt{x^2 - 1} \right)^n + \left(x + \sqrt{x^2 - 1} \right)^n \right], \quad x \in \mathbb{R} \setminus]-1, 1[.$$

- b) Für a > 3/2 sei f_a : $[-1,1] \to \mathbb{R}$ definiert durch $f_a(x) = \frac{1}{x+a}$.
 - i) Beweisen Sie, daß die Folge der Lagrangeschen Interpolationspolynome $p_n \in P_n$ vom Grad n an f_a in den Nullstellen von T_{n+1} gleichmäßig auf [-1, 1] gegen f_a konvergiert.
 - ii) Gilt dies für jede Wahl von n+1 paarweise verschiedenen Knoten in [-1,1]?

Wir wünschen Ihnen ein frohes Weihnachtsfest und einen guten Rutsch in das neu Jahr!