Lineare Algebra und analytische Geometrie II Übungsblatt 03

Abgabe bis Di den 25.04.06, 16:00 Uhr, in die Kästen im Mathefoyer bzw. in den Übungsgruppen.

Aufgabe 11

a) Bestimme die Eigenwerte und Eigenräume folgender Matrix $A \in \mathbb{R}^{2 \times 2}$:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

(Dabei soll das charakteristische Polynom (sofern bekannt) nicht benutzt werden.

Und ein kleiner Tipp: Betrachte die Matrix $A - \lambda E_2$.)

b) Sei K ein Körper und seien $d_1, \ldots, d_n \in K$. Bestimme die Eigenwerte und Eigenräume der Diagonalmatrix

$$D := \operatorname{Diag}(d_1, \dots, d_n) = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{pmatrix}.$$

Aufgabe 12

Es sei $n \in \mathbb{N}$ und wie früher $V = \operatorname{Pol}_n(\mathbb{R}, \mathbb{R})$ der Vektorraum der Polynomfunktionen von Grad $\leq n$ auf \mathbb{R} sowie $D: V \to V$ der durch D(f) = f' (gewöhnliche Ableitung) gegebene Endomorphismus von V. Bestimme alle Eigenwerte und Eigenvektoren von D. (Es gibt nicht viele.)

Zusatzfrage (*): Was ändert sich, wenn wir für V den Vektorraum aller differenzierbaren Funktionen nehmen ?

Aufgabe 13

Wir betrachten eine reelle 2×2 -Matrix der Gestalt

$$S = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$
 wobei $a, b, \in \mathbb{R}, a^2 + b^2 = 1$,

sowie die zugörige lineare Abbildung

$$F_S: \mathbb{R}^2 \to \mathbb{R}^2, \quad \vec{x} \mapsto S\vec{x}.$$

In der Vorlesung hatten wir gezeigt, dass es einen Eigenvektor v zum Eigenwert 1 gibt. Die Gerade $g := \mathbb{R}v \subseteq \mathbb{R}^2$ besteht aus Fixpunkten von F_S .

(Bitte wenden.)

- a) Zeige, dass auch -1 ein Eigenwert von F_S ist und bestimme einen zugehörigen Eigenvektor w.
- b) Zeige, dass v und w aufeinander senkrecht stehen (bezüglich des Standardskalarproduktes).
- c) Schließe aus b), dass F_S die orthogonale Spiegelung an der Geraden g ist, d.h. für jeden Vektor $u \notin g$ steht der Verbindungsvektor von u zum Bildpunkt Su senkrecht auf g.

Aufgabe 14

Die Voraussetzungen seien wie in Aufgabe 13, ferner sei $\alpha \in [0, 2\pi)$ so, dass $a = \cos \alpha$, $b = \sin \alpha$. Beweise die letzte Behauptung von Satz 2.8.25: die Gerade g schließt mit der x_1 -Achse den Winkel $\alpha/2$ ein. (Schulmathematik über die Winkelfunktionen wird benötigt.)

Aufgabe 15 (*)

Die folgende Aufgabe gestattet eine Zurückführung der direkten Summe von $k \geq 3$ Unterräumen auf die gut bekannte direkte Summe von zwei Unterräumen (allerdings mehrfach angewendet).

Folgendes soll bewiesen werden: Seien $V_1, \ldots V_k$ Untervektorräume von V und für jedes $i \in \{1, \ldots, k-1\}$ sei die Summe $W_i + V_{i+1}$ direkt (also $W_i \cap V_{i+1} = \{\mathbf{0}\}$), wobei $W_i := V_1 + V_2 + \cdots + V_i$ gesetzt ist. Dann ist die Summe $V_1 + V_2 + \cdots + V_k$ aller k Unterräume eine direkte Summe.