UNIVERSITAT DORTMUND

Fachbereich Mathematik Institut für Analysis Prof. Dr. Winfried Kaballo

Übungsaufgaben Analysis I, Blatt 4 Abgabe 14.11.06, 18 Uhr

1. Man untersuche die angegebenen Folgen auf Konvergenz und bestimme ggf. Die Grenzwerte:

a)
$$a_n = \frac{4n^3 - (-1)^n n^2}{5n + 2n^3}$$
,

b)
$$a_n = \frac{3n^4 + n^n}{5^n + 4^n n!}$$
,

c)
$$a_n = \frac{2^{n^3}}{n! \cdot 5^{n^2} + n^n}$$

d)
$$a_n = \frac{(n^3 - 5n)^4 - n^{12}}{n^{11}}$$

a)
$$a_n = \frac{4n^3 - (-1)^n n^2}{5n + 2n^3}$$
, b) $a_n = \frac{3n^4 + n^n}{5^n + 4^n n!}$, c) $a_n = \frac{2^{n^3}}{n! \cdot 5^{n^2} + n^n}$, d) $a_n = \frac{(n^3 - 5n)^4 - n^{12}}{n^{11}}$, e) $a_n = \frac{1}{h_n}$, $h_n = \sum_{k=1}^n \frac{1}{k}$, f) $a_n = 2^{-n} \cdot \binom{n}{k}$.

$$f) \ a_n = 2^{-n} \cdot \binom{n}{k}$$

2. Es seien (a_n) eine Nullfolge und (b_n) eine beschränkte Folge. Man zeige, daß auch $(a_n \cdot b_n)$ eine Nullfolge ist.

3. Es gelte
$$a_n \to a \neq 0$$
 und $b_n \to 0$, $b_n \neq 0$. Man zeige $\left| \frac{a_n}{b_n} \right| \to +\infty$.

4. Man finde eine unbeschränkte Folge, die weder nach $+\infty$, noch nach $-\infty$ strebt.

5. Es sei
$$(a_n)$$
 eine Folge mit $a_n \neq 2$ für alle n , so daß $a_n \to 2$. Existiert dann $\lim_{n \to \infty} \frac{a_n^3 - 8}{a_n - 2}$?

 6^* (Zusatzaufgabe). Man finde eine beschränkte divergente Folge (a_n) mit $|a_{n+1}-a_n|\to 0.$