## UNIVERSITAT DORTMUND

Fachbereich Mathematik Institut für Analysis Prof. Dr. Winfried Kaballo



## Übungsaufgaben Analysis I, Blatt 15 Ferienblatt - wird Anfang des Sommersemesters besprochen

- 1. Für folgende Potenzreihen  $\sum_{k>0} a_k (z-a)^k$  bestimme man den Konvergenzradius:
- a)  $a_k = k^5 \log(k+1) + k^2 i$ , b)  $a_k = \frac{k^3 \sin k}{(1.7)^k}$ ,
- c)  $a_k = 3^{k/2} e^{-k}$
- d)  $a_k = \frac{(ik)^k}{k!^2}$ .
- 2. Die Reihe  $\sum_{k>0} a_k (z-a)^k$  habe Konvergenzradius  $\rho=2$ . Man bestimme die Konvergenzradien folgender Reihen ( $m \in \mathbb{N}$ ):

- a)  $\sum_{k\geq 0} a_k^m (z-a)^k$ b)  $\sum_{k\geq 0} a_k (z-a)^{mk}$ c)  $\sum_{k\geq 0} a_k (z-a)^{k^2}$
- 3. Es seien  $I \subseteq \mathbb{R}$  ein offenes Intervall und  $f \in C^m(I)$ . Was kann man aus  $f^{(m)}(x) \equiv 0$ schließen?
- 4. Zu  $f: x \mapsto \sqrt{1+x}$  bestimme man das Taylor-Polynom vom Grad 3 in a=0 und zeige  $\left| \sqrt{\frac{3}{2}} - \frac{157}{128} \right| \le \frac{1}{400}$ .
- 5. Es sei  $f \in C^2(a, \infty)$ , so dass f und f'' auf  $(a, \infty)$  beschränkt sind.
- a) Man zeige auch  $f' \in \mathcal{B}(a, \infty)$  sowie  $||f'||^2 \le 4||f|| \cdot ||f''||$ .

*Hinweis*: Für  $x \in (a, \infty)$  und h > 0 zeigt dass es ein  $\xi$  zwischen x und x + 2h gibt, mit

 $f'(x) = \frac{1}{2h}(f(x+2h) - f(x)) - hf''(\xi).$  b) Gilt zusätzlich  $\lim_{x \to \infty} f(x) = 0$ , so folgere man auch  $\lim_{x \to \infty} f'(x) = 0$ . Hinweis: Man wende a) auf  $(b, \infty)$  an und untersuche  $b \to \infty$ .