ÜBUNGSBLATT 10

Abgabe in die Briefkästen bis Mittwoch, 10.01.2007, 12 Uhr

Aufgabe 1. (4 Punkte)

Den folgenden Satz kann man als Verschärfung des Satzes von Liouville sehen. Sei f eine ganze Funktion und es gebe ein $n \in \mathbb{N}$ und positive Konstanten R, M mit $|f(z)| \leq M|z|^n$ für $|z| \geq R$. Zeigen Sie, dass dann f ein Polynom vom Grad $deg(f) \leq n$ ist.

Aufgabe 2. (4 Punkte)

Sei f eine biholomorphe Funktion der offenen Einheitskreisscheibe auf sich, welche den Nullpunkt festläßt. Zeigen Sie, dass dann f eine Drehung sein muss.

Aufgabe 3. (4 Punkte)

- a) Finden Sie reelle C^{∞} -Abbildungen $f: B_1(0) \to B_1(0)$ mit f(0,0) = (0,0) und $|f(x,y)| \ge 2|(x,y)|$ für (x,y) nahe (0,0). (Hinweis: Konstruieren Sie eine möglichst einfache Familie solcher Abbildungen.)
- b) Sind die von Ihnen konstruierten Abbildungen, aufgefasst als komplexe Funktionen, holomorph? Warum?
- c) Beweisen oder widerlegen Sie die Holomorphie Ihrer Abbildung direkt (d.h. ohne einen tiefliegenden Satz zu zitieren).

Aufgabe 4. (4 Punkte)

- a) Bestimmen Sie für die aus der Vorlesung bekannte Funktion $f(z) = \frac{1}{(z-1)(z-2)}$ den Typ der isolierten Singularitäten, indem Sie die Laurentreihen um $z_0 = 1$ und $z_0 = 2$ aufstellen. Bestimmen Sie auch den jeweiligen maximalen Konvergenzradius.
- b) Entwickeln Sie $f(z) = \frac{e^z}{(z-1)^2}$ in eine Laurentreihe um den Entwicklungspunkt $z_0 = 1$. Bestimmen Sie auch den maximalen Konvergenzradius der Reihe und den Typ der Singularität im Punkt $z_0 = 1$.

Frohe Weihnachten und einen guten Rutsch ins Neue Jahr!