Abgabe: Mo, 16.04.2007, 10h

Algebra I Übungsblatt 2

Aufgabe 5:

Seien $\sigma, \pi \in S_n$ mit $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 1 & 6 \end{pmatrix}$ und $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{pmatrix}$.

- a) Finde die Zyklenzerlegung für σ und π .
- b) Berechne die Inverse von σ und π .
- c) Schreibe σ als Produkt von Transpositionen.
- d) Berechne das Konjugat $\pi \sigma \pi^{-1}$.

Aufgabe 6:

Seien $a, b \in \{1, ..., n\}$ mit $a \neq b$ fest gewählt. Zeigen Sie, dass für $n \geq 3$ die alternierende Gruppe A_n von den Dreierzyklen (a, b, k) mit $k \in \{1, ..., n\} \setminus \{a, b\}$ erzeugt wird, d.h. dass jede gerade Permutation als Produkt solcher Dreierzyklen darstellbar ist.

Aufgabe 7:

- a) Sei G eine Gruppe der Ordnung 9. Wie viele Teilmengen besitzt die Menge G und wie viele davon enthalten das neutrale Element von G? Welche Elementeanzahl darf eine Teilmenge haben, damit sie im Einklang mit dem Satz von Lagrange zu einer echten Untergruppe von G gehören kann? Wie viele Teilmengen mit neutralem Element gibt es zu der jeweiligen Anzahl?
- b) Zeigen Sie, dass eine Untergruppe einer Gruppe G vom Index zwei stets ein Normalteiler von G ist.

Aufgabe 8:

Seien G, H Gruppen und G zyklisch. Zeigen Sie:

- a) Jede Untergruppe von G ist zyklisch.
- b) Ist $\varphi: G \longrightarrow H$ ein Gruppenhomomorphismus, so sind $\ker(\varphi)$ und $\varphi(G)$ zyklisch.
- c) Seien nun G, H endlich und zyklisch. Es ist $G \times H$ genau dann eine zyklische Gruppe, wenn $\operatorname{ord}(G)$ und $\operatorname{ord}(H)$ teilerfremd sind.

Aufgabe 9:

Sei p eine Primzahl und U eine Untergruppe der symmetrischen Gruppe S_p , die eine Transposition τ und einen p-Zykel σ enthält. Zeigen Sie, dass dann gilt $U = S_p$.