H. Bluhm

Algebra I Übungsblatt 5

Aufgabe 20:

Zeigen Sie:

a) Die Menge der Quaternionen

$$\mathbb{H} = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \mid z, w \in \mathbb{C} \right\}$$

bildet mit der üblichen Matrizenaddition und -multiplikation einen Schiefkörper.

b) Mit Hilfe der Abbildung

$$\mathbb{C} \longrightarrow \mathbb{H}, \ z \mapsto \begin{pmatrix} z & 0 \\ 0 & \bar{z} \end{pmatrix}$$

lässt sich \mathbb{C} als Teilring von \mathbb{H} ansehen.

Aufgabe 21:

Seien $x_1, \ldots, x_r, m_1, \ldots, m_r \in \mathbb{Z}$ mit paarweise teilerfremden Zahlen $m_1, \ldots, m_r \geq 2$ und sei $n_i = m_1 \cdots m_{i-1}$ für $i = 1, \ldots, r+1$.

- a) Zeigen Sie, dass für jedes $i \in \{1, ..., r\}$ ein Zahl $a_i \in \mathbb{Z}$ existiert mit $1 \leq a_i < m_i$ und $a_i n_i \equiv 1 \mod m_i$.
- b) Für i = 1, ..., r sei $b_i \in \mathbb{Z}$ mit $0 \le b_i < m_i$ und $b_i \equiv (x_i \sum_{k=1}^{i-1} b_k n_k) a_i \mod m_i$. Zeigen Sie, dass die Zahl $x = b_1 n_1 + \cdots + b_r n_r$ simultane Lösung der Kongruenzen

$$x \equiv x_1 \mod m_1$$

 $x \equiv x_2 \mod m_2$
 \vdots
 $x \equiv x_r \mod m_r$

ist. Geben Sie alle Lösungen des Systems an.

c) Berechnen Sie eine simultane Lösung der Kongruenzen

$$x \equiv 1 \mod 2$$
, $x \equiv 2 \mod 3$, $x \equiv 4 \mod 5$.

Aufgabe 22:

Zeigen Sie, dass jedes faktorielle Monoid der Primbedingung genügt.

Aufgabe 23:

Sei M ein faktorielles Monoid, seien $a, b \in M$ und

$$a = \prod_{p \, \mathrm{prim}} p^{v_p(a)}, \quad b = \prod_{p \, \mathrm{prim}} p^{v_p(b)}$$

die Faktorisierungen von a und b in irreduzible Elemente. Zeigen Sie, dass der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache von a und b existieren und dass gilt

$$ggT(a,b) = \prod_{p \text{ prim}} p^{\min(v_p(a),v_p(b))}, \quad kgV(a,b) = \prod_{p \text{ prim}} p^{\max(v_p(a),v_p(b))}.$$