UNIVERSITÄT DORTMUND Fachbereich Mathematik, Lehrstuhl V Prof. Dr. Martin Skutella Britta Peis Daniel Dressler

Lineare Algebra und analytische Geometrie II

10. Übung zur Linearen Algebra II

Bitte werfen Sie die bearbeiteten Aufgaben bis Dienstag, den 19. 06. 2007, um 10 Uhr in die vorgesehenen Briefkästen.

Aufgabe 1: 4 Punkte

Sei \mathbb{K} ein Körper und $A, B \in \mathbb{K}^{m \times n}$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- i) A und B sind äquivalent.
- ii) B ergibt sich aus A durch elementare Spalten- und Zeilenumformungen.
- iii) Rang A = Rang B.

Aufgabe 2: 5 Punkte

Sind die folgenden Matrizen aus dem $\mathbb{R}[X]^{3\times 3}$ invertierbar? Falls ja, bestimmen Sie die Inverse! Hinweis: Falls die Inverse existiert, lässt sie sich wie in Kapitel V, §4 Korollar 3 mit Hilfe der Adjungierten adj(A) bestimmen. Allerdings ist die Bedingung $\det(A) \neq 0$ in einem Ring im Allgemeinen zu schwach. (Diese "Adjungierte" in Kapitel V ist etwas ganz anderes als der "adjungierte Operator".)

$$A = \begin{pmatrix} x+1 & 2x^2 & -5 \\ 0 & x-2 & 20 \\ 2 & -x & x \end{pmatrix}, \quad B = \begin{pmatrix} 3x-2 & 3 & -9x+9 \\ -x+2 & -1 & 3x-6 \\ x-1 & 1 & -3x+4 \end{pmatrix}$$

Aufgabe 3: 6 Punkte

a) Wenden Sie den Satz von Frobenius an, um zu entscheiden, ob die folgenden reellen Matrizen ähnlich sind. Wenn ja, bestimmen Sie eine Matrix P, so dass $A' = P^{-1}AP$.

$$A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}, \quad A' = \begin{pmatrix} 3 & 2 \\ -2 & -2 \end{pmatrix}$$

b) Sind die folgenden reellen Matrizen ähnlich?

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & 3 \end{pmatrix}, \quad A' = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ -1 & 2 & 1 \end{pmatrix}$$

Aufgabe 4: 5 Punkte

Für welche $k \in \mathbb{R}$ hat die folgende Gleichung eine Lösung $x, y, z \in \mathbb{R}$?

$$2x^2 + 2y^2 + 5z^2 + kxy - 2xz + 2kyz - 2zy + kyx = -1$$

Hinweis: Fassen Sie die linke Seite als quadratische Form auf und betrachten Sie die zugehörige symmetrische Bilinearform. Die Lösungen x, y, z müssen nicht bestimmt werden.

Die Fachschaften Mathe und Wirtschaftsmathe laden am 19. 06. 2007 zur Wi(Ma)² Sommerparty ein.