5. Übungsblatt zu Analysis I WS 2007/08, 13.11.2007

Aufgabe 18 Untersuchen Sie die Folgen auf Konvergenz und bestimmen Sie ggf. den Grenzwert:

a)
$$a_n = \sqrt[n]{n^2 + 3}$$
 b) $a_n = \frac{\sqrt{n^4 + 1 + 2n^2 - 3^n}}{\sqrt[n]{n^2 - n^3 + 3^{n+1}}}$ c) $a_n = \left(1 + \frac{x}{n}\right)^n$ für $x = 2$, $\frac{1}{3}$, $\frac{2}{3}$ d) $a_n = \sqrt[n]{a^n + b^n + c^n}$ für $a \ge b \ge c > 0$ e) $a_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)$ f) $a_n = \frac{n^n}{3^n n!}$ g) $a_n = \left(1 - \frac{1}{n^2}\right)^n$

Aufgabe 19 Für $a_1 = \frac{3}{2}$ sei die Folge (a_n) rekursiv durch $a_{n+1} = a_n^2 - 2a_n + 2$ definiert.

- a) Zeigen Sie $1 \le a_n \le 2$ für alle $n \in \mathbb{N}$.
- b) Zeigen Sie, dass die Folge (a_n) monoton fallend ist.
- c) Berechnen Sie den Grenzwert von (a_n) .

Aufgabe 20 Die Folge (a_n) sei durch $a_n = \sqrt[n]{n}$ definiert.

- a) Zeigen Sie, dass ein $n_0 \in \mathbb{N}$ existiert, so dass $a_{n+1} < a_n$ für alle $n > n_0$ gilt.
- b) Zeigen Sie, dass ein $n_0 \in \mathbb{N}$ existiert, so dass $a_n 1 \ge \frac{1}{n}$ für alle $n > n_0$ gilt.

Problem der Woche Zeigen Sie, dass die Folge (a_n) , die duch $a_n = \left(1 + \frac{1}{n}\right)^{n+1}$ definiert ist, monoton fallend ist.