Lineare Algebra (und analytische Geometrie) I Übungsblatt 06

Aufgabe 22 (endliche zyklische Gruppen). Es sei C eine endliche zyklische Gruppe, erzeugt von $c \in C$.

- (a) Beweisen Sie, dass alle Untergruppen von C zyklisch sind.
- (b) Zeigen Sie, dass alle Faktorgruppen von C zyklisch sind.
- (c) Zeigen Sie, dass es für jeden Teiler $k \in \mathbb{N}$ von ord C genau eine Untergruppe vom Index k in C gibt und geben Sie einen Erzeuger dieser Gruppe an.
- (d) Bestimmen Sie alle Elemente $x \in C$ mit C = [x].

Aufgabe 23 (Struktur von $\mathbb{Z}/n\mathbb{Z}$). Es sei $n \in \mathbb{N}$ eine natürliche Zahl.

- (a) Welche Untergruppen hat $\mathbb{Z}/n\mathbb{Z}$?
- (b) Ein Element $k + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$ für $k \in \mathbb{Z}$ heißt invertierbar, wenn es ein $l \in \mathbb{Z}$ gibt mit

$$(k + n\mathbb{Z})(l + n\mathbb{Z}) = 1 + n\mathbb{Z}.$$

Zeigen Sie, dass $k+n\mathbb{Z}$ für eine gegebene ganze Zahl $k\in\mathbb{Z}$ genau dann invertierbar ist, wenn ggT(k,n)=1 gilt.

Aufgabe 24 (Teilringe und Teilkörper der reellen Zahlen).

- (a) Zeigen Sie, dass es keine rationale Zahl x mit $x^2 = 2$ gibt.
- (b) Wir betrachten die Teilmengen

$$\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \text{ und } \mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$

in \mathbb{R} . Zeigen Sie, dass sich die Verknüpfungen von \mathbb{R} auf $\mathbb{Z}[\sqrt{2}]$ und $\mathbb{Q}[\sqrt{2}]$ vererben, d.h. dass die Einschränkungen dieser Verknüpfungen auf $\mathbb{Z}[\sqrt{2}] \times \mathbb{Z}[\sqrt{2}]$ bzw. $\mathbb{Q}[\sqrt{2}] \times \mathbb{Q}[\sqrt{2}]$ Bilder in $\mathbb{Z}[\sqrt{2}]$ bzw. $\mathbb{Q}[\sqrt{2}]$ annehmen (Abgeschlossenheit von Addition und Multiplikation), und dass $\mathbb{Z}[\sqrt{2}]$ bzgl. dieser Verknüpfungen ein kommutativer Ring mit Einselement und $\mathbb{Q}[\sqrt{2}]$ ein Körper ist.

Aufgabe 25 (direkte Produkte).

(a) Es seien G und H Gruppen. Auf dem kartesischen Produkt $G \times H$ definieren wir eine Verknüpfung \cdot durch

$$(g,h)(g',h') := (gg',hh')$$
 für alle $(g,h),(g',h') \in G \times H$.

Man spricht hierbei von komponentenweiser Verknüpfung. Zeigen Sie, dass $G \times H$ zusammen mit der komponentenweisen Verknüpfung eine Gruppe ist, die genau dann abelsch ist, wenn G und H abelsch sind. Man nennt $G \times H$ das ($\ddot{a}u\beta ere$) direkte Produkt der Gruppen G und H.

- (b) Es seien R und S kommutative Ringe mit Einselement. Definieren Sie in analoger Weise auf $R \times S$ Verknüpfungen + und \cdot , bzgl. derer $R \times S$ ein kommutativer Ring mit Einselement wird.
- (c) Nun seien K und L Körper. Wieso ist $K \times L$ bzgl. komponentenweiser Verknüpfungen kein Körper?
- (d) Zeigen Sie, dass stattdessen $\mathbb{Q} \times \mathbb{Q}$ mit komponentenweiser Addition und einer Multiplikation gegeben durch

$$(x,y)(x',y') := (xx'-yy',xy'+yx')$$
 für alle $(x,y),(x',y') \in \mathbb{Q} \times \mathbb{Q}$

ein Körper wird.