Mengentheoretische Topologie

Ausgabe: 24.10.2007

Abgabe: 31.10.2007, 12.00 Uhr

Übungsblatt 2

Aufgabe 5

Es seien E ein topologischer Raum und $A, B \subset E$.

- a) Zeigen Sie: $\mathring{A} \cup \mathring{B} \subset \overbrace{A \cup B}$ und $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- b) Finden Sie ein Beispiel für die zweite Aussage in a).

Aufgabe 6

Sei $X = \{a, b, c, d, e\}$. Geben Sie die Topologie an, zu der die Familie

$$S = \{\{a, b, c\}, \{a, b, d\}, \{b, e\}\}$$

eine Subbasis ist.

Aufgabe 7

Es sei $X := \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\} \cup \{(0,1)\}$. \mathcal{B} sei eine Menge von Teilmengen B von X, so dass gilt:

$$B = \{(x,0) \in X \mid x \in]a,b[\,,\,a < b\}$$
 oder
$$B = \{(x,0) \in X \mid x \in]-a,0[\,\cup\,]0,a[\,,\,a > 0\} \cup \{(0,1)\}\,.$$

- a) Zeigen Sie, dass es genau eine Topologie auf X gibt, die $\mathcal B$ als Basis hat.
- b) Kann die Topologie durch eine Metrik erzeugt werden?

Aufgabe 8

Es sei V ein \mathbb{R} –Vektorraum und V^* der Dualraum. Für $x \in V$ sei

$$\mathcal{U}(x) := \left\{ U \subset V \mid \text{ es gibt } h_1, \dots, h_r \in V^*, \ r \in \mathbb{N}, \\ \text{mit } U(x; h_1, \dots, h_r) \subset U \right\},$$

wobei

$$U(x; h_1, ..., h_r) := \{ y \in V \mid \max \{ |h_i(x - y)| \mid i = 1, ..., r \} \le 1 \}.$$

- a) Zeigen Sie, dass es genau eine Topologie \mathcal{O} auf V gibt, für die $\mathcal{U}(x)$ das Umgebungssystem von $x \in V$ ist.
- b) Zeigen Sie, das für $V=\mathbb{R}^n$ die Topologie $\mathcal O$ mit der gewöhnlichen Topologie übereinstimmt.