Mengentheoretische Topologie

Ausgabe: 2.1.2008

Abgabe: 9.1.2008, 12.00 Uhr

Übungsblatt 10

Aufgabe 37

- a) Zeigen Sie, dass jeder metrische Raum T_4 ist.
- b) Zeigen Sie, dass jeder endliche T_1 -Raum die diskrete Topologie trägt.

Aufgabe 38

Es sei X eine beliebige Menge. Bestimmen sie die gröbste Topologie, welche die Trennungseigenschaft T_1 besitzt.

Aufgabe 39

Es sei $E := [-1,1] \subset \mathbb{R}$ versehen mit der Unterraumtopologie und \sim sei eine Relation auf E, definiert durch

$$x \sim y \ :\Leftrightarrow \ \left\{ \begin{array}{l} y = \pm x, & \text{falls } x,y \in]-1,1[\\ y = x, & \text{falls } x,y \in \{-1,1\} \, . \end{array} \right.$$

Zeigen Sie:

- a) $E/_{\sim}$ ist ein T_1 -Raum.
- b) $E/_{\sim}$ ist kein Hausdorffraum.

Aufgabe 40

Es seien X und Y topologische Räume, $f: X \to Y$ und $g: Y \to X$ stetige Abbildungen mit $f \circ g = \mathrm{id}_X$.

- a) Zeigen Sie: Ist X hausdorffsch, so auch Y.
- b) Zeigen Sie, dass die Umkehrung der Aussage in Teil a) im allgemeinen nicht gilt, indem Sie geeignete Gegenbeispiele angeben. Nennen Sie solche Gegenbeispiele sowohl für den Fall, dass Y endlich, als auch für den Fall, dass Y unendlich ist.

Aufgabe 41

Sei A eine abgeschlossene Teilmenge eines normalen Raumes X und $f:A\to\mathbb{R}^n$ eine stetige Abbildung mit $\|f(x)\|<1$ für alle $x\in A$, wobei $\|\cdot\|$ die euklidische Norm von \mathbb{R}^n bezeichnet. Zeigen Sie, dass es eine stetige Abbildung $F:X\to\mathbb{R}^n$ gibt mit $F|_A=f$ und $\|F(x)\|<1$ für alle $x\in X$.

(Hinweis: Benutzen Sie den Tietze-Erweiterungssatz und Urysohns Lemma.)