1. Übungsblatt zu "Gewöhnliche Differentialgleichungen" Sommersemester 2008

Abgabetermin: Mittwoch, 16.4.08, bis 10.00 Uhr in den Kästen

Aufgabe 1: Es seien $D \subseteq \mathbb{K}^n$ offen und $f: D \to \mathbb{K}^n$ mit $f = (f_1, \dots, f_n)$. Zeigen Sie, dass f genau dann lokal Lipschitz-stetig ist, wenn f_j lokal Lipschitz-stetig ist für alle $j \in \{1, \dots, n\}$.

Aufgabe 2: Es seien $\rho, \omega > 0$. Transformieren Sie die Differentialgleichung

$$\ddot{x} + 2\rho\dot{x} + \omega^2\sin x = 0$$

in ein System

$$\dot{X} = F(t, X)$$

und zeigen Sie, dass F lokal Lipschitz-stetig bezüglich x ist.

Aufgabe 3: Es seien $A \in \mathbb{M}_n(\mathbb{C})$ und $v \in \mathbb{C}^n$. Lösen Sie das Anfangswertproblem

$$\frac{du}{dz} = Au, \ u(0) = v$$

- a) durch explizite Picard-Iteration
- b) mit einem Potenzreihenansatz

und zeigen Sie, dass die Lösung eine ganze Funktion ist.

Aufgabe 4: Im Folgenden bezeichne P die Lebensdauerfunktion und s die Sterberate (siehe 2.2 der Vorlesung).

a) Berechnen Sie für

$$s(t) = \alpha e^{\beta t}$$
 bzw. $s(t) = \frac{\alpha}{1+t}$

mit $\alpha,\beta>0$ jeweils P, Halbwertszeit und Lebenserwartung.

b) Es seien $t_0 > 0$ und P gegeben. Berechnen Sie die Lebensdauerfunktion P_{t_0} für die Individuen, die zum Zeitpunkt t_0 noch leben, und deren Lebenserwartung.