Prof. Dr. Frank Lutz

Blatt 4 vom 30.04.08

(Abgabe am 6.05 bzw. 7.05 in den Übungen)

Aufgabe 1:

- a) Wie viele positive ganze Zahlen 1 < n < 1000 haben keinen Faktor 1 < k < 10?
- b) Wie viele natürliche Zahlen $1 \le n \le 100000$ sind weder Quadratzahlen noch dritte oder vierte Potenzen natürlicher Zahlen?

Aufgabe 2:

In einer Gruppe von 30 Menschen sprechen 22 deutsch, 18 französisch, 24 englisch. Bestimmen Sie die Mindest- und Höchstzahl der Personen in der Gruppe, die alle drei Sprachen sprechen.

Aufgabe 3:

- a) Wie viele Permutationen der Menge {1, ..., 13} haben genau vier Fixpunkte?
- b) Auf wie viele Arten kann man die Buchstaben A,A,A,B,B,C,C,D,E,F permutieren, so dass nie zwei gleiche Buchstaben nebeneinander sthen?

Aufgabe 4:

Zeige, dass $(1+\sqrt{3})^{2n+1}+(1-\sqrt{3})^{2n+1}$ für jedes $n\geq 0$ eine natürliche Zahl darstellt. Hinweis: Binomialsatz. Da $0<|1-\sqrt{3}|<1$ ist, muss also $-(1-\sqrt{3})^{2n+1}$ der Anteil nach dem Komma von $(1+\sqrt{3})^{2n+1}$ sein. Folgere daraus, dass der ganzzahlige Teil von $(1+\sqrt{3})^{2n+1}$ stets 2^{n+1} als Faktor enthält.