Lineare Algebra und analytische Geometrie II Übungsblatt 6

Abgabe: Di, 20.05.2008, 12h

Aufgabe 1:

Sei $V = \operatorname{Sym}_2(\mathbb{R})$ der euklidische Vektorraum aller symmetrischen Matrizen aus $\mathbb{R}^{(2,2)}$ mit dem Skalarprodukt $\langle A, B \rangle = \operatorname{Spur}(AB)$ für $A, B \in \mathbb{R}^{(2,2)}$.

- a) Zeigen Sie, dass $U = \{(a_{ij}) \in V \mid a_{11} = a_{22}\}$ ein Untervektorraum von V ist.
- b) Bestimmen Sie eine Orthonormalbasis von U.
- c) Bestimmen Sie die zu U gehörigen orthogonalen Projektionen π und π' . Geben Sie dazu für jede Matrix $A \in V$ deren Bild unter π explizit an.

Aufgabe 2:

Für $n \in \mathbb{N}$ mit $n \geq 3$ und Vektoren $x_1, \ldots, x_{n-1} \in \mathbb{R}^n$ sei das Vektorprodukt definiert als

$$x_1 \times \dots \times x_{n-1} := \sum_{i=1}^{n} (-1)^{i+1} \det(A_i) e_i \in \mathbb{R}^n,$$

wobei x_1, \ldots, x_{n-1} die Zeilen der Matrix $A \in \mathbb{R}^{(n-1,n)}$ sind und A_i für $i = 1, \ldots, n$ aus A durch Streichen der i-ten Spalte hervorgeht.

- a) Bestimmen Sie das Vektorprodukt der drei Vektoren $x_1 = (1, 2, 1, 0), x_2 = (0, -1, 0, 3)$ und $x_3 = (1, 1, 1, 0).$
- b) Berechnen Sie das 3-dimensionale Volumen des 3-Parallelotops $P(x_1, x_2, x_3)$. Was fällt Ihnen auf?

Aufgabe 3:

Sei V ein euklidischer Vektorraum und $L:V\to V$ ein längentreuer Homomorphismus, d.h. für alle $v\in V$ gilt |L(v)|=|v|. Zeigen Sie:

- a) Für alle $u, v \in V$ gilt $\langle L(u), L(v) \rangle = \langle u, v \rangle$. In diesem Fall heißt L auch orthogonal.
- b) Für linear unabhängige Vektoren $v_1, \ldots, v_n \in V$ mit $n \in \mathbb{N}$ ist das Volumen des n-Parallelotops $P(v_1, \ldots, v_n)$ invariant unter L, d.h. es gilt $Vol(P(v_1, \ldots, v_n)) = Vol(P(L(v_1), \ldots, L(v_n)))$.

Aufgabe 4:

Sei K ein Körper, V ein euklidischer K-Vektorraum und $L \in \mathcal{L}(V)$. Weiter seien $v_1, \ldots, v_n \in V$ linear unabhängig. Wie ändert sich das Volumen von $P(v_1, \ldots, v_n)$ unter L, wenn für L gilt

- a) $L(v_i) = \lambda_i v_i$ für i = 1, ..., n und gewisse $\lambda_1, ..., \lambda_n \in K$,
- b) $L(v_i) = v_{\sigma(i)}$ für i = 1, ..., n und eine Permutation $\sigma \in S_n$.