Lineare Algebra und analytische Geometrie II Übungsblatt 10

Aufgabe 1:

Berechnen Sie eine Jordansche Normalform der Matrix

$$A = \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 6 & 4 & 0 \\ 0 & -1 & 2 & 0 \\ 1 & -1 & -3 & 4 \end{pmatrix} \in \mathbb{C}^{(4,4)}$$

und geben Sie eine zugehörige Jordanbasis von \mathbb{C}^4 sowie die Transformationsmatrix an.

Aufgabe 2:

Geben Sie für die Matrix

$$A = \begin{pmatrix} 4 & -1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 12 & 9 & -15 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 6 & -6 \end{pmatrix} \in K^{(5,5)},$$

falls möglich, eine Jordansche Normalform für folgende Körper K an:

- a) $K = \mathbb{C}$,
- b) $K = \mathbb{R}$.
- c) $K = \mathbb{F}_2$,
- d) $K = \mathbb{F}_3$,
- e) $K = \mathbb{F}_7$.

Aufgabe 3:

Sei V ein endlich-dimensionaler Vektorraum und $T \in \mathcal{L}(V)$ nilpotent vom Nilpotenzgrad ν . Zeigen Sie:

- a) 0 ist einziger Eigenwert von T.
- b) Ist $R \in \mathcal{L}(V)$ nilpotent vom Nilpotenzgrad μ mit $R \circ T = T \circ R$, so sind auch $R \circ T$ und $T \circ R$ nilpotente Endomorphismen.
- c) Mit $T' = id_V + T + \cdots + T^{\nu-1}$ ist ein bijektiver Endomorphismus definiert.
- d) Ist $L \in \mathcal{L}(V)$ regulär mit $L \circ T = T \circ L$, so ist auch L + T regulär. Gilt auch die Umkehrung?

Aufgabe 4:

Sei $n \in \mathbb{N}$, V ein n-dimensionaler Vektorraum und $T \in \mathcal{L}(V)$ nilpotent vom Nilpotenzgrad n. Zeigen Sie:

- a) Für jedes $i \in \{0, ..., n\}$ ist $\text{Kern}(T^i)$ ein T-invarianter Unterraum von V der Dimension i.
- b) Jeder T-invariante Unterraum W von V ist von der Form $W = \operatorname{Kern}(T^i)$ für ein $i \in \{0, \dots, n\}$. [Hinweis: Beweisen Sie dies mit Induktion nach n.]
- c) Jeder T-invariante Unterraum von V ist T-irreduzibel.