Lineare Algebra und analytische Geometrie II Übungsblatt 11

Abgabe: Di, 24.06.2008, 12h

Aufgabe 1:

Bestimmen Sie die reelle Jordansche Normalform der Matrix

$$A = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \\ a & 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{(4,4)}$$

mit $a \in \mathbb{R}$ und eine zugehörige Jordanbasis.

Aufgabe 2:

Sei K ein Körper, V ein endlich-dimensionaler K-Vektorraum und $L:V\to V$ ein Endomorpismus, dessen charakteristisches Polynom über K in Linearfaktoren zerfällt. Für jeden Eigenwert λ von L bezeichne d_{λ} die geometrische und d'_{λ} die algebraische Vielfachheit sowie f_{λ} den Index von λ . Zeigen Sie:

- a) Es gilt $d_{\lambda} \leq d'_{\lambda}$ für jeden Eigenwert λ von L. Dabei gilt genau dann Gleichheit, wenn $L|_{E'(\lambda)}$ diagonalisierbar ist.
- b) Es gilt $f_{\lambda} \leq d'_{\lambda}$ für jeden Eigenwert λ von L. Dabei gilt genau dann Gleichheit, wenn $E'(\lambda)$ irreduzibel ist.

Aufgabe 3:

Sei $n \in \mathbb{N}$, $\lambda \in \mathbb{C}$ und $J(n,\lambda) \in \mathbb{C}^{(n,n)}$ der elementare Jordanblock der Größe n. Zeigen Sie:

- a) Die Matrizen $J(n,\lambda)$ und $J(n,\lambda)^T$ sind ähnlich. Geben Sie dazu eine Matrix $S \in GL(n,\mathbb{C})$ an, für die $J(n,\lambda)^T = S^{-1}J(n,\lambda)S$ gilt.
- b) Jede Matrix $A \in \mathbb{C}^{(n,n)}$ ist ähnlich zu ihrer Transponierten A^T .

Aufgabe 4:

Sei K ein Körper, V ein endlich-dimensionaler K-Vektorraum und $L:V\to V$ ein Endomorpismus, dessen charakteristisches Polynom über K in Linearfaktoren zerfällt. Zeigen Sie:

- a) Es existiert eine Darstellung L=P+T von L, wobei P ein diagonalisierbarer und T ein nilpotenter Endomorphismus ist mit $P\circ T=T\circ P$.
- b) Ist L = P + T eine Darstellung von L wie in a), so stimmen die Eigenwerte von L und P überein und es gilt

$$E'(L,\lambda) = E(P,\lambda)$$

für jeden Eigenwert λ von L.

c) Zeigen Sie, dass die Darstellung von L in a) eindeutig ist.