Lineare Algebra und analytische Geometrie II Übungsblatt 13

Abgabe: Di, 08.07.2008, 12h

Aufgabe 1:

Sei V ein endlich-dimensionaler, euklidischer Vektorraum, $a \in V$ mit |a| = 1 und $G = a_0 + \operatorname{sp}(a)$ mit $a_0 \in V$ eine Gerade in V. Eine Abbildung $\varphi : V \to V$ heißt involutorisch, wenn $\varphi \neq id_V$ und $\varphi^2 = id_V$ gilt. Zeigen Sie:

- a) Ist H eine Ursprungsgerade, also $0 \in H$, und $L \in O(V)$ eine involutorische Abbildung, die genau die Punkte von H festlässt, so existiert eine Orthonormalbasis von V, bzgl. der die Matrix von L die Gestalt diag $(-1, \ldots, -1, 1)$ besitzt.
- b) Ist $H = \operatorname{sp}(a)$, so lässt sich der Endomorphismus L aus a) darstellen als

$$S_H: V \to V, v \mapsto 2\langle v, a \rangle a - v.$$

- c) Sind φ_1, φ_2 Bewegungen von V, so ist $\varphi_2 \varphi_1 \varphi_2^{-1}$ genau dann involutorisch, wenn φ_1 involutorisch ist.
- d) Sind φ_1, φ_2 Bewegungen von V, so ist ein Punkt $p \in V$ genau dann Fixpunkt von φ_1 , d.h. es gilt $\varphi_1(p) = p$, wenn $\varphi_2(p)$ Fixpunkt von $\varphi_2\varphi_1\varphi_2^{-1}$ ist.
- e) Jede involutorische Bewegung von V, die genau die Punkte der Geraden G festhält, besitzt die Form

$$S_G: V \to V, v \mapsto 2\langle v, a \rangle a - v + 2(a_0 - \langle a_0, a \rangle a).$$

Aufgabe 2:

Sei V ein endlich-dimensionaler K-Vektorraum und $(\mathcal{P},\mathcal{G}) = \mathrm{AG}(V,K)$ der affine Raum über V. Weiter seien $G,H\in\mathcal{G}$ zwei Geraden, die sich in genau einem Punkt $p\in\mathcal{P}$ schneiden, und $a,b\in G$, $c,d\in H$ Punkte, so dass p,a,b,c,d paarweise verschieden sind.

Zeigen Sie, dass die Gerade $\overline{a,c}$ genau dann zu $\overline{b,d}$ parallel ist, wenn gilt $\mathrm{TV}(p,a;b) = \mathrm{TV}(p,c;d)$.

Aufgabe 3:

Seien V, W zwei endlich-dimensionale K-Vektorräume, $(\mathcal{P}_1, \mathcal{G}_1) = AG(V, K), (\mathcal{P}_2, \mathcal{G}_2) = AG(W, K)$ affine Räume und $\varphi : \mathcal{P}_1 \to \mathcal{P}_2$ eine Abbildung. Zeigen Sie:

a) Ist φ affin, so gilt

$$\varphi(a_0 + \alpha_1 a_1 + \dots + \alpha_k a_k) = \varphi(a_0) + \alpha_1 \varphi'(a_1) + \dots + \alpha_k \varphi'(a_k)$$

für alle $k \in \mathbb{N}$, $a_0, \ldots, a_k \in \mathcal{P}_1$ und $\alpha_1, \ldots, \alpha_k \in K$.

b) Es ist φ genau dann affin, wenn für alle $k \in \mathbb{N}_0, a_0, \ldots, a_k \in \mathcal{P}_1$ und $\beta_0, \ldots, \beta_k \in K$ mit $\sum_{i=0}^k \beta_i = 1$ gilt

$$\varphi(\beta_0 a_0 + \dots + \beta_k a_k) = \beta_0 \varphi(a_0) + \dots + \beta_k \varphi(a_k).$$

Aufgabe 4:

Sei V ein 2-dimensionaler, euklidischer Vektorraum und $(\mathcal{P}, \mathcal{G}) = AG(V, K)$ der affine Raum über V. Ein Punktetripel (a_1, a_2, a_3) heißt Dreieck, wenn $a_1, a_2, a_3 \in \mathcal{P}$ affin unabhängig sind. Zwei Dreiecke (a_1, a_2, a_3) , (b_1, b_2, b_3) heißen kongruent, wenn eine Bewegung $\varphi : \mathcal{P} \to \mathcal{P}$ existiert mit $\varphi(a_i) = b_i$ für i = 1, 2, 3. Zeigen Sie:

- a) Sind zwei Dreiecke kongruent, so ist die zugehörige Bewegung eindeutig bestimmt.
- b) Die Dreicke (a_1, a_2, a_3) , (b_1, b_2, b_3) sind genau dann kongruent, wenn $d(a_1, a_2) = d(b_1, b_2)$, $d(a_1, a_3) = d(b_1, b_3)$ und $\angle(a_2 a_1, a_3 a_1) = \angle(b_2 b_1, b_3 b_1)$ gilt.
- c) Die Dreicke (a_1, a_2, a_3) , (b_1, b_2, b_3) sind genau dann kongruent, wenn $d(a_i, a_j) = d(b_i, b_j)$ für alle $i, j \in \{1, 2, 3\}$ mit i < j gilt.