Lineare Algebra II Übungsblatt 7

Abgabe: Mo, 02.06.2008, 12h

Aufgabe 1:

Sei V ein endlich-dimensionaler euklidischer Vektorraum und seien U_1, U_2 Untervektorräume von V. Zeigen Sie:

- a) Die Zuordnung $U\mapsto U^\perp$ ist eine bijektive Abbildung auf der Menge aller Untervektorräume von V.
- b) Es gilt $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- c) Es gilt $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$.
- d) Aus $U_1 \subset U_2$ folgt $U_2^{\perp} \subset U_1^{\perp}$.

Aufgabe 2:

Sei die symmetrische Bilinearform $F: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definiert durch

$$F(x,y) = 2x_1y_1 + 2x_2y_2 + x_3y_3 + x_1y_2 + x_2y_1.$$

- a) Zeigen Sie, dass F ein Skalarprodukt auf \mathbb{R}^3 ist.
- b) Bestimmen Sie mit dem Schmidtschen Orthogonalisierungsverfahren eine Orthonormalbasis von \mathbb{R}^3 bzgl. F ausgehend von der Standardbasis.

Aufgabe 3:

Sei $n \in \mathbb{N}$, V ein endlich-dimensionaler euklidischer Vektorraum und $\{a_1, \ldots, a_n\} \subset V$ ein Orthonormalsystem. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- a) $\{a_1, \ldots, a_n\}$ ist eine Basis von V.
- b) Ist $v \in V$ mit $\langle v, a_i \rangle = 0$ für i = 1, ..., n, so folgt v = 0.
- c) Für alle $u,v \in V$ gilt $\langle u,v \rangle = \sum_{i=1}^n \langle u,a_i \rangle \cdot \langle a_i,v \rangle$.
- d) Für jedes $v \in V$ gilt $|v|^2 = \sum_{i=1}^n |\langle v, a_i \rangle|^2$.

Aufgabe 4:

Sei $V = \operatorname{Sym}_2(\mathbb{R})$ der euklidische Vektorraum aller symmetrischen Matrizen aus $\mathbb{R}^{(2,2)}$ mit dem Skalarprodukt $\langle A, B \rangle = \operatorname{Spur}(AB)$ für $A, B \in \mathbb{R}^{(2,2)}$.

- a) Zeigen Sie, dass $U = \{(a_{ij}) \in V \mid a_{11} = a_{22}\}$ ein Untervektorraum von V ist.
- b) Bestimmen Sie eine Orthonormalbasis von U.
- c) Bestimmen Sie die zu U gehörigen orthogonalen Projektionen π und π' . Geben Sie dazu für jede Matrix $A \in V$ deren Bild unter π explizit an.