2. Übungsblatt zu Analysis III WS 2008/09, 20.10.2008

Aufgabe 6 Für $1 \leq j \leq n$ seien $f_j \in L^+(\mathbb{R})$ mit $f_j \geq 0$. Es sei $f: \mathbb{R}^n \to \mathbb{R}$ durch $f(\mathbf{x}) = \prod_{j=1}^n f_j(x_j)$ definiert. Zeigen Sie, dass $f \in L^+(\mathbb{R}^n)$ mit $\int f = \prod_{j=1}^n \int f_j$ gilt.

Aufgabe 7 Es sei $f : \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{1}{1+x^2}$. Zeigen Sie an Hand der Definition, dass $f \in L^+(\mathbb{R})$ gilt.

Aufgabe 8 Es sei $\tilde{f}:[a,b]\to\mathbb{R}$ eine Riemann-integrierbare Funktion. Zeigen Sie, dass die Funktion $f:\mathbb{R}\to\mathbb{R}$, mit $f(x)=\begin{cases} \tilde{f}(x), & x\in[a,b]\\ 0, & \mathrm{sonst} \end{cases}$, in $L^+(\mathbb{R})$ enthalten ist und $\int f=\int_a^b \tilde{f}(x)dx \ \mathrm{gilt}.$

Aufgabe 9 Berechnen Sie für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, mit

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & |x| + |y| \le 1 \\ 0, & \text{sonst} \end{cases},$$

die iterierten Integrale $\int \left(\int f(x,y)dy\right)dx$ und $\int \left(\int f(x,y)dx\right)dy$. Existieren jeweils diese Integrale?