

Prof. Dr. L. Schwachhöfer

Dr. F. Klinker

WS 2008/2009

ÜBUNGSBLATT 9 ZUR VORLESUNG LINEARE ALGEBRA 1

Aufgabe 1:

Es sei V ein endlichdimensionaler Vektorraum mit Basis $\{v_1,\ldots,v_n\}$ und V^* sein Dualraum. Da eine lineare Abbildung durch Angabe der Bilder einer Basis erklärt ist, werden für $j=1,\ldots,n$ durch $v_j^*(v_i):=\begin{cases} 1 \text{ falls } i=j\\ 0 \text{ falls } i\neq j \end{cases}$ lineare Abbildungen $v_j^*:V\to\mathbb{R}$ definiert.

Zeigen Sie, dass $\{v_1^*, \dots, v_n^*\}$ eine Basis von V^* ist. Diese Basis heißt die zu $\{v_1, \dots, v_n\}$ DUALE BASIS.

Aufgabe 2:

Es sei U ein Untervektorraum des endlichdimensionalen Vektorraums V. Wir definieren einen Untervektorraum des Dualraums V^* durch $U^{\perp} := \{ f \in V^* \mid \forall u \in U : f(u) = 0 \}$, dieser heißt LOTRAUM ZU U (Überzeugen Sie noch einmal davon, dass U^{\perp} wirklich ein Untervektorraum ist und dass das auch gilt, wenn man Vektorräume zulässt, die nicht endlichdimensional sind).

- a) Es sei $\{u_1, \ldots, u_r\}$ eine Basis von U und $\{u_1, \ldots, u_r, u_{r+1}, \ldots, u_n\}$ ein Ergänzung zu einer Basis von V. Zeigen Sie dim $U + \dim U^{\perp} = n$ indem Sie eine Basis von U^{\perp} konstruieren.
- b) Zeigen Sie, dass die folgenden Eigenschaften erfüllt sind:
 - i) U^{\perp} und V/U sind isomorph (Geben Sie dazu auch einen Isomorphismus an!), $V^{\perp} = \{0\}$.
 - ii) $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}, (U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}.$
 - iii) $U_1 \subset U_2 \Rightarrow U_2^{\perp} \subset U_1^{\perp}$.
 - iv) $V = U_1 \oplus U_2 \Rightarrow V^* = U_1^{\perp} \oplus U_2^{\perp}$.

Bemerkung zu b iv): Sind U_1 und U_2 zwei Untervektorräume des gleichen Vektorraums V und gilt $U_1 \cap U_2 = \{0\}$ so ist $U_1 + U_2 \simeq U_1 \oplus U_2$. Man nennt dann die Summe von $U_1 + U_2 \subset V$ auch DIREKT und schreibt $U_1 \oplus U_2 \subset V$.

Aufgabe 3:

Es sei $f: M_{n,n}(\mathbb{K}) \to \mathbb{K}$ eine lineare Abbildung derart, dass f(AB) = f(BA) für alle $A, B \in M_{n,n}(\mathbb{K})$ erfüllt ist. Zeigen Sie, dass unter dieser Voraussetzung eine Zahl $s \in \mathbb{K}$ existiert, so dass

$$f(A) = s(a_{11} + a_{22} + \ldots + a_{nn})$$
 für alle $A = (a_{ij})_{i,j=1,\ldots,n} \in M_{n,n}(\mathbb{K})$.

Hinweis: Nutzen Sie eine geeignete Basis für $M_{n,n}(\mathbb{K})$ und betrachten Sie speziell Matrizen, die elementaren Zeilen- bzw Spaltenoperationen entsprechen.

Aufgabe 4:

Gegeben seien die Basen

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\} \text{ und } \mathcal{B}_2 = \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix} \right\}$$

des \mathbb{R}^4 . Wir betrachten weiter die lineare Abbildung $f: \mathbb{R}^4 \to \mathbb{R}^4$ mit

$$f(x, y, z, t) := (4x - 4z, 2x - 4t, 2x + 2z, 2y - 2t)$$

sowie die Matrix
$$T := \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
 .

(Überzeugen Sie sich zunächst davon, dass f bezüglich der Basis \mathcal{B}_1 die Matrixdarstellung $\begin{pmatrix} 4 & 0 & -4 & 0 \\ 2 & 0 & 0 & -4 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix}$

und dass
$$T^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$
 ist).

- a) Begründen Sie, warum T die Matrixdarstellung der identischen Abbildung auf \mathbb{R}^4 ist, wobei \mathcal{B}_2 die Basis im Urbildraum und \mathcal{B}_1 diejenige im Bildraum ist.
- b) Geben Sie eine Matrixdarstellung der identischen Abbildung auf \mathbb{R}^4 an, wobei im Gegensatz zu a) die Rolle von \mathcal{B}_1 und \mathcal{B}_2 vertauscht ist. Begründen Sie Ihre Wahl.
- b) Beschreiben Sie den Zusammenhang zwischen der linearen Abbildung f und der Matrix $T^{-1}A$. Berechnen Sie diese.
- c) Geben Sie eine Matrixdarstellungen von f (i) bezüglich der Basis \mathcal{B}_2 im Urbildraum und \mathcal{B}_1 im Bildraum, sowie (ii) bezüglich der Basis \mathcal{B}_2 im Urbild- und Bildraum an. Begründen Sie Ihr Vorgehen.