3. Aufgabenblatt zur Numerik 1

Abgabe: 05.11.2008, 18.00 Uhr in die Kästen im Foyer

Aufgabe 1 Wurzelberechnung mit Gleitpunkt-Arithmetik

Auf einer Rechenmaschine sei 4-stellige Gleitpunktarithmetik ($a = 0.m_1m_2m_3m_4 \cdot 10^{\pm E}$) mit natürlicher Rundung möglich, wobei die Grundoperationen gemäß $x \circledast y = \text{rd}(x * y)$ realisiert sind.

- a) Berechnen Sie unter diesen Bedingungen (4-stellige Rundung) möglichst gute Näherungen für die Wurzeln der Gleichung $x^2 39.6x + 1 = 0$, $x \in \mathbb{R}$.
- b) Vergleichen Sie das Ergebnis mit dem Fall dass bei ungünstiger Rechnung Auslöschung auftritt.
- c) Zeigen Sie, dass der relative Fehler bei der Operation $\operatorname{rd}(\sqrt{\operatorname{rd}(x)})$ in erster Näherung durch 3/2 eps beschränkt ist.
- d) Geben Sie Schranken für den relativen Fehler an, den Sie bei a.) gemacht haben (berücksichtigen Sie nur die tatsächlich gemachten Rundungen).

Aufgabe 2* Kondition und Gutartigkeit

Gesucht ist ein Algorithmus zur Auswertung der Funktion

$$f(\varphi, \lambda) = \frac{4/5}{\sqrt{\pi \cos^2 \varphi + \lambda \sin^2 \varphi}}, \quad \varphi \in (0, \pi/2), \quad \lambda \in (\pi/4, \pi).$$

- a) Ist diese Aufgabe gut konditioniert? $Hinweis: ab \leq (\pi a^2 + \lambda b^2)/(2\sqrt{\pi \lambda}), \ a, b \in \mathbb{R}.$
- b) Die durch die Umformung $f(\varphi, \lambda) = 0.8 \cdot (\pi + (\lambda \pi)\sin^2\varphi)^{-1/2}$ induzierte Auswertungsmethode vermeidet die Berechnung von $\cos\varphi$ und ist somit schneller als die direkte Auswertung. Vergleichen Sie die beiden Wege in Hinblick auf ihre numerische Gutartigkeit.

Aufgabe 3 Die natürliche Matrizennorm

Zeigen Sie, daß für jede Vektornorm $\|\cdot\|$ auf \mathbb{C}^n durch

$$||A|| := \sup\{||Ax||/||x||, x \in \mathbb{C}^n \setminus \{0\}\}$$

eine mit ihr verträgliche Matrizennorm erklärt ist. Sie heißt die von $\|\cdot\|$ erzeugte "natürliche" Matrizennorm. Warum ist die Quadratsummennorm $||A||:=\left(\sum_{j,k=1}^n\ |a_{jk}|^2\right)^{1/2}$ keine natürliche Matrizennorm?

Verifizieren Sie die folgenden Aussagen:

- a) Die Eigenwerte einer hermiteschen Matrix $A \in \mathbb{C}^{n \times n}$ sind reell.
- b) Eine hermitesche Matrix $A \in \mathbb{C}^{n \times n}$ ist genau dann positiv definit, wenn alle ihre Eigenwerte positiv sind.
- c) Für eine positiv definite Matrix $A \in \mathbb{C}^{n \times n}$ gilt mit ihrem kleinsten bzw. größten Eigenwert λ_{\min} bzw. λ_{\max} :

$$\lambda_{\min}||x||_2^2 \ \leq \ (Ax,x)_2 \ \leq \ \lambda_{\max}||x||_2^2 \ , \quad x \in \mathbb{C}^n \ .$$