Übungen zur Vorlesung Analysis III

Wintersemester 2009/10

Prof. Dr. B. Schweizer

Dr. M. Lenzinger

1) Hilberträume.

Sei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und sei X ein Vektorraum über \mathbb{K} . Eine Abbildung $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ heisst *Sesquilinearform*, falls für $x, x_1, x_2, y, y_1, y_2 \in X$ und für $\alpha \in \mathbb{K}$ gilt:

(i)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$
, $\langle x, \alpha y \rangle = \bar{\alpha} \langle x, y \rangle$,

(ii)
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$
, $\langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$.

Die Sesquilinearform heisst symmetrisch, wenn für $x, y \in X$ gilt

(iii)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

und positiv definit, wenn für $x \in X$

(iv)
$$\langle x, x \rangle \ge 0$$
 und $\langle x, x \rangle = 0 \iff x = 0$.

Eine positiv definite symmetrische Sesquilinearform heisst Skalarprodukt.

- (a) Zeigen Sie, dass durch $\langle u,v\rangle=\int_{\Omega}u(x)\bar{v}(x)dx$ ein Skalarprodukt auf $L^{2}(\Omega,\mathbb{K})$ definiert wird.
- (b) Zeigen Sie für $u,v\in L^2(\Omega,\mathbb{K})$ die Parallelogrammidentität:

$$||u+v||_{L^2}^2 + ||u-v||_{L^2}^2 = 2(||u||_{L^2}^2 + ||v||_{L^2}^2)$$

2) Funktionen in L^p .

Sei $1 \leq p < \infty$. Zu $\alpha \in \mathbb{R}$ definiere $f : \mathbb{R}^3 \to \mathbb{R}$, $f(x) := ||x||^{\alpha}$.

- (a) Untersuchen Sie, für welche $\alpha \in \mathbb{R}$ die Funktion f in $L^p(\Omega)$, $\Omega := B_R(0) \setminus \{0\}$ ist.
- (b) Untersuchen Sie, für welche $\alpha \in \mathbb{R}$ die Funktion f in $L^p(\Omega)$, $\Omega := \mathbb{R}^3 \setminus B_R(0)$ ist.
- (c) Sei $1 \leq p < q < \infty$ und $\Omega := B_R(0) \setminus \{0\}$. Untersuchen Sie, für welche $\alpha \in \mathbb{R}$ die Funktion f in $L^p(\Omega)$ aber nicht in $L^q(\Omega)$ ist.

3) Konvergenz in L^p .

Sei $\Omega \subset \mathbb{R}^n$ messbar und $1 \leq p < \infty.$ Zeigen Sie:

- (a) Zu jeder Cauchy-Folge $(f_k)_{k\in\mathbb{N}}$ in $L^p(\Omega)$ gibt es eine Teilfolge $(f_{k_l})_{l\in\mathbb{N}}$ und ein $f\in L^p(\Omega)$, so dass $f_{k_l}\to f$ punktweise fast überall.
- (b) Konvergiert die Folge $(f_k)_{k\in\mathbb{N}}$ in $L^p(\Omega)$ gegen $f\in L^p(\Omega)$, so existiert eine Teilfolge $(f_{k_l})_{l\in\mathbb{N}}$, die punktweise fast überall gegen f konvergiert.
- (c) Auf die Auswahl einer Teilfolge in (b) kann i.a. nicht verzichtet werden.
- (d) Es gibt beschränkte Folgen $(f_k)_{k\in\mathbb{N}}$ in $L^p(\Omega)$, die keine punktweise (fast überall) konvergente Teilfolge besitzen.

Abgabe am Donnerstag, 03.12.09.

Aktuelle Übungsblätter auf www.mathematik.uni-dortmund.de/lsi/schweizer/uebungen-ana3-2009.html