$\ddot{\text{U}}\text{BUNGSBLATT 4}$ ANALYTISCHE GEOMETRIE - MAT105 (TEIL 2) - WS 2009/2010 FAKULTÄT FÜR MATHEMATIK, TU DORTMUND

PROF. DR. LORENZ SCHWACHHÖFER, DR. TOM KRANTZ

Aufgabe 1

Sei $Q = E_{a,b} \subset \mathbb{R}^2$ mit $a \geq b > 0$ eine Ellipse in Standardform mit Brennpunkten F und F', und sei P ein Punkt von Q.

- (1) Bestimmen Sie die Gleichung der Tangente g_P zu \mathcal{Q} in dem Punkt P. (Hinweis: Schreiben Sie zuerst \mathcal{Q} als Lösungsmenge einer Gleichung f(x) = 0, wobei $f \in C^{\infty}(\mathbb{R}^2)$, so dass $\operatorname{grad}(f)_P \neq 0$ und benützen Sie, dass $\operatorname{grad}(f)_P$ orthogonal ist zur Tangente g_P .)
- (2) Zeigen Sie dass die Winkel¹, die die Strahlen \overrightarrow{PF} und $\overrightarrow{PF'}$ mit g_P bilden, gleich sind

Aufgabe 2

Sei $Q = H_{a,b} \subset \mathbb{R}^2$ eine Hyperbel in Standardform mit Brennpunkten F und F', und sei P ein Punkt von Q.

- (1) Bestimmen Sie die Gleichung der Tangente g_P zu $\mathcal Q$ in dem Punkt P.
- (2) Zeigen Sie dass die Winkel, die die Strahlen \overrightarrow{PF} und $\overrightarrow{PF'}$ mit g_P bilden, gleich sind

Aufgabe 3

Sei $\mathcal{Q} \subset \mathbb{R}^2$ eine Parabel in Standardform mit Brennpunkt F. Sei P ein Punkt von \mathcal{Q} .

- (1) Bestimmen Sie die Gleichung der Tangente g_P zu \mathcal{Q} in dem Punkt P.
- (2) Zeigen Sie dass der Winkel, den der Strahl \overrightarrow{PF} mit g_P bildet, gleich dem Winkel ist, den g_P mit der Parallele zur y-Achse durch P bildet.

Aufgabe 4

Seien $a, b, c, d, e, f \in \mathbb{R}$ mit $(a, b, c) \neq (0, 0, 0)$. Sei $\mathcal{Q} = L\ddot{o}s(ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0) \subset \mathbb{R}^2$. Sei $\mathcal{E} = L\ddot{o}s(z = 1) \subset \mathbb{R}^3$ und $i : \mathbb{R}^2 \to \mathcal{E}$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix}$.

- (1) Zeigen Sie dass es eine symmetrische Matrix $Q \in M_{3,3}(\mathbb{R})$ gibt so dass: $i(Q) = \mathcal{K} \cap \mathcal{E}$, wobei $\mathcal{K} = \{X \in \mathbb{R}^3 \mid X^t Q X = 0\}$.
- (2) Beweisen Sie dass es $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ und eine Isometrie ϕ von \mathbb{R}^3 gibt, die $i(\mathcal{Q})$ abbildet auf $\mathcal{K}' \cap \mathcal{E}'$, wobei $\mathcal{E}' = \phi(\mathcal{E})$ eine Ebene ist und

$$\mathcal{K}' = \phi(\mathcal{K}) = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid \lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0 \}.$$

(3) Untersuchen Sie die Form der Quadrik $\mathcal Q$ im Falle wo $\det Q=0.$

Date: 26.11.2009.

¹In diesem Übungsblatt meinen wir mit Winkel zwischen zwei Geraden oder einer Geraden und einem Strahl, den Winkel zwischen beiden mit Mass $\leq \frac{\pi}{2}$.