AR Dipl. Math. A. Rademacher

Numerik I

11. Übung

Aufgabe 11.1

Erweitern Sie die in Aufgabe 10.1 geschriebenen Programme um die Spline-Interpolation. Benutzen Sie dazu die methode spline von Matlab. Vergleichen Sie anschließend die Resultate der Spline-Interpolation bzgl. der Funktionen f_1 , f_2 und f_3 mit den Resultaten, die Sie in Aufgabe 10.1 bzgl. der Methoden myNeville und interp1 erhalten haben.

Aufgabe 11.2 (3 Punkte)

 $S_3(X)$ bezeichne den Vektorraum der kubischen natürlichen Splines auf der Zerlegung X, $x_0 = 0$, $x_1 = 1$ und $x_2 = 2$, auf [0, 2].

- (i) Sind die folgenden Funktionen in $S_3(X)$?
 - (a) $f(x) = x^3 x^2$,
 - (b) $f(x) = (x-1)_+^3 \frac{x^3}{2}$.
- (ii) Bestimmen Sie alle 5-tupel $(a,b,c,d,e) \in \mathbb{R}^5$, so dass die Funktion

$$s(x) := a \cdot (x)_{+}^{3} + b \cdot (x-1)^{3} + c \cdot (x-2)_{+}^{3} + d \cdot x + e$$

in $S_3(X)$ ist.

(iii) Bestimmen Sie die stückweise polynomiale Form des interpolierenden Splines $s \in S_3(X)$ für $f(x) = x^3$. Wie lautet das Ergebnis, wenn die natürlichen Randbedingungen durch $s''(x_0) = f''(x_0)$, $s''(x_2) = f''(x_2)$ ersetzt werden?

Aufgabe 11.3

Sei $\{x_0 + ih\}_{i \in \mathbb{Z}}$ eine äquidistante Knotenfolge mit Schrittweite $h > 0, x_0 \in \mathbb{R}$.

- (i) Bestimmen Sie die stückweise polynomiale Form des quadratischen normalisierten B-Splines $B_{0,3}$ und verifizieren Sie die Symmetrie-Eigenschaft $B_{0,3}(x_0+x) = B_{0,3}(x_3-x)$.
- (ii) Zeigen Sie die "Shiftinvarianz"-Eigenschaft $B_{i,3}(x) = B_{0,3}(x ih), i \in \mathbb{Z}$.

Aufgabe 11.4 (3 Punkte)

Für $m \ge 0$, $n \ge 1$, betrachte die m + n Funktionen

$$x^{i}$$
, $i = 0, ..., m$, $(x_{j} - x)_{+}^{m}$, $j = 1, ..., n - 1$.

Zeigen Sie folgendes:

- (i) Diese Funktionen sind Elemente des Raumes $S_m(X)$.
- (ii) Diese Funktionen sind linear unabhängig.
- (iii) Diese Funktionen bilden eine Basis des Raumes ${\cal S}_m(X).$

Abgabe: Mittwoch, den 05.01.2010 bis 12 Uhr.

Frohe Feiertage und einen guten Rutsch ins neue Jahr!