Numerik I

12. Übung

Aufgabe 12.1 (2.5 Punkte)

Das Intervall I = [0, 4] sei mittels der Zerlegung X, $0 = x_0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, aufgeteilt. Die Funktion $s \in S_3(X)$ sei der interpolierende Spline zu den Daten $y_0 = 1$, $y_0^{(1)} = -9$, $y_1 = 6$, $y_2 = 12$, $y_3 = 20$, $y_4 = 22$, $y_4^{(1)} = -12$.

- (i) Berechnen Sie mittels Satz 4.5.14.4 die Bernstein-Bézier Darstellung von s.
- (ii) Werten Sie s dann mit Hilfe des Algorithmus von de Casteljau an den Stellen $\xi_1 = \frac{1}{2}, \ \xi_2 = \frac{4}{3}$ aus.

Aufgabe 12.2

Der Bernstein-Operator vom Grad m auf [0,1] ist definiert durch

$$B_m(f;x) := \sum_{k=0}^m f\left(\frac{k}{m}\right) \cdot P_k^{(m)}(x), \quad f \in C[0,1],$$

wobei $P_k^{(m)}$ die Bernstein-Grundpolynome auf [0,1] sind,

- (i) Berechnen Sie $B_n(e_i)$, i = 0, 1, 2, wobei e_i die Monome $e_i(x) = x^i$ bezeichnet. Reproduziert B_n lineare (bzw. quadratische) Funktionen?
- (ii) Bestimmen Sie, an welcher Stelle das Grundpolynom $P_k^{(m)}$ seinen Maximalwert annimmt.

Aufgabe 12.3 (3.5 Punkte)

Beweisen Sie die in Bemerkung 4.5.14.3 angegebenen Eigenschaften der Bernstein Grundpolynome.

Aufgabe 12.4

Die Funktion $\sin(x)$ soll im Intervall $I = [0, \frac{\pi}{2}]$ äquidistant so tabelliert werden, dass bei geeigneter Interpolation der Interpolationsfehler für jedes $x \in I$ kleiner als $\frac{1}{2}10^{-4}$ ist. Wieviele Stützstellen n benötigt man dazu, wenn man zur Interpolation

- (i) das Interpolationspolynom, bzw.
- (ii) den kubischen Spline $s \in S_3(X)$ mit s''(0) = 0 und $s''(\frac{\pi}{2}) = -1$

nutzt. Geben Sie einen Algorithmus an, der aufbauend auf den Stützpunkten die Funktion $\sin(x)$ für alle $x \in \mathbb{R}$ auswertet.

Abgabe: Mittwoch, den 13.01.2010 bis 12 Uhr.